Nota

¡Ayúdanos a traducir la documentación oficial de Python al Español! Puedes encontrar más información en Como contribuir. Ayuda a acercar Python a más personas de habla hispana.

Libro de recetas de Logging

Autor:

Vinay Sajip <vinay_sajip at red-dove dot com>

Esta página contiene un número de recetas sobre logging, que han sido útiles en el pasado. Para obtener enlaces al tutorial e información de referencia, consulte Otros recursos.

Usar logging en múltiples módulos

Múltiples llamadas a logging.getLogger('someLogger') retornan una referencia al mismo objeto logger. Esto es cierto no solo dentro del mismo módulo, sino también en todos los módulos siempre que estén ejecutándose en el mismo proceso del intérprete de Python. Es válido para las referencias al mismo objeto. Además, el código de la aplicación puede definir y configurar un logger primario en un módulo y crear (pero no configurar) un logger secundario en un módulo separado, y todas las llamadas al secundario pasarán al principal. A continuación un módulo principal:

import logging
import auxiliary_module

# create logger with 'spam_application'
logger = logging.getLogger('spam_application')
logger.setLevel(logging.DEBUG)
# create file handler which logs even debug messages
fh = logging.FileHandler('spam.log')
fh.setLevel(logging.DEBUG)
# create console handler with a higher log level
ch = logging.StreamHandler()
ch.setLevel(logging.ERROR)
# create formatter and add it to the handlers
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
# add the handlers to the logger
logger.addHandler(fh)
logger.addHandler(ch)

logger.info('creating an instance of auxiliary_module.Auxiliary')
a = auxiliary_module.Auxiliary()
logger.info('created an instance of auxiliary_module.Auxiliary')
logger.info('calling auxiliary_module.Auxiliary.do_something')
a.do_something()
logger.info('finished auxiliary_module.Auxiliary.do_something')
logger.info('calling auxiliary_module.some_function()')
auxiliary_module.some_function()
logger.info('done with auxiliary_module.some_function()')

Y aquí un módulo auxiliar:

import logging

# create logger
module_logger = logging.getLogger('spam_application.auxiliary')

class Auxiliary:
    def __init__(self):
        self.logger = logging.getLogger('spam_application.auxiliary.Auxiliary')
        self.logger.info('creating an instance of Auxiliary')

    def do_something(self):
        self.logger.info('doing something')
        a = 1 + 1
        self.logger.info('done doing something')

def some_function():
    module_logger.info('received a call to "some_function"')

El resultado se ve así:

2005-03-23 23:47:11,663 - spam_application - INFO -
   creating an instance of auxiliary_module.Auxiliary
2005-03-23 23:47:11,665 - spam_application.auxiliary.Auxiliary - INFO -
   creating an instance of Auxiliary
2005-03-23 23:47:11,665 - spam_application - INFO -
   created an instance of auxiliary_module.Auxiliary
2005-03-23 23:47:11,668 - spam_application - INFO -
   calling auxiliary_module.Auxiliary.do_something
2005-03-23 23:47:11,668 - spam_application.auxiliary.Auxiliary - INFO -
   doing something
2005-03-23 23:47:11,669 - spam_application.auxiliary.Auxiliary - INFO -
   done doing something
2005-03-23 23:47:11,670 - spam_application - INFO -
   finished auxiliary_module.Auxiliary.do_something
2005-03-23 23:47:11,671 - spam_application - INFO -
   calling auxiliary_module.some_function()
2005-03-23 23:47:11,672 - spam_application.auxiliary - INFO -
   received a call to 'some_function'
2005-03-23 23:47:11,673 - spam_application - INFO -
   done with auxiliary_module.some_function()

Logging desde múltiples hilos

Realizar logging desde múltiples hilos (threads) no requiere ningún esfuerzo especial. El siguiente ejemplo muestra el logging desde el hilo principal (inicial) y otro hilo:

import logging
import threading
import time

def worker(arg):
    while not arg['stop']:
        logging.debug('Hi from myfunc')
        time.sleep(0.5)

def main():
    logging.basicConfig(level=logging.DEBUG, format='%(relativeCreated)6d %(threadName)s %(message)s')
    info = {'stop': False}
    thread = threading.Thread(target=worker, args=(info,))
    thread.start()
    while True:
        try:
            logging.debug('Hello from main')
            time.sleep(0.75)
        except KeyboardInterrupt:
            info['stop'] = True
            break
    thread.join()

if __name__ == '__main__':
    main()

Cuando se ejecuta, el script debe imprimir algo como lo siguiente:

   0 Thread-1 Hi from myfunc
   3 MainThread Hello from main
 505 Thread-1 Hi from myfunc
 755 MainThread Hello from main
1007 Thread-1 Hi from myfunc
1507 MainThread Hello from main
1508 Thread-1 Hi from myfunc
2010 Thread-1 Hi from myfunc
2258 MainThread Hello from main
2512 Thread-1 Hi from myfunc
3009 MainThread Hello from main
3013 Thread-1 Hi from myfunc
3515 Thread-1 Hi from myfunc
3761 MainThread Hello from main
4017 Thread-1 Hi from myfunc
4513 MainThread Hello from main
4518 Thread-1 Hi from myfunc

Esto muestra la salida de logging intercalada como cabría esperar. Por supuesto, este enfoque funciona para más hilos de lo que se muestran aquí.

Múltiples gestores y formateadores

Los loggers son simples objetos Python. El método addHandler() no tiene una cuota mínima o máxima para la cantidad de gestores (handlers) que puede agregar. A veces será beneficioso para una aplicación registrar todos los mensajes de todas las prioridades en un archivo de texto mientras se registran simultáneamente los errores o más en la consola. Para configurar esto, simplemente configure los gestores apropiados. Las llamadas de logging en el código de la aplicación permanecerán sin cambios. Aquí hay una ligera modificación al ejemplo de configuración simple anterior basado en módulo:

import logging

logger = logging.getLogger('simple_example')
logger.setLevel(logging.DEBUG)
# create file handler which logs even debug messages
fh = logging.FileHandler('spam.log')
fh.setLevel(logging.DEBUG)
# create console handler with a higher log level
ch = logging.StreamHandler()
ch.setLevel(logging.ERROR)
# create formatter and add it to the handlers
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
ch.setFormatter(formatter)
fh.setFormatter(formatter)
# add the handlers to logger
logger.addHandler(ch)
logger.addHandler(fh)

# 'application' code
logger.debug('debug message')
logger.info('info message')
logger.warning('warn message')
logger.error('error message')
logger.critical('critical message')

Tenga en cuenta que el código de la “aplicación” no se preocupa por los gestores múltiples. Todo lo que cambió fue la adición y configuración de un nuevo gestor llamado fh.

La capacidad de crear nuevos gestores con filtros de mayor o menor prioridad puede ser muy útil al escribir y probar una aplicación. En lugar de usar muchas declaraciones print para la depuración, use logger.debug: a diferencia de las declaraciones de impresión, que tendrá que eliminar o comentar más tarde, las declaraciones de logger.debug pueden permanecer intactas en el código fuente y permanecen inactivas hasta que las necesite nuevamente. En ese momento, el único cambio que debe realizar es modificar el nivel de prioridad del logger y/o gestor para depurar.

Logging en múltiples destinos

Supongamos que desea que la consola y un archivo tengan diferentes formatos de mensaje y salida de log para diferentes situaciones. Por ejemplo, desea registrar mensajes con un nivel DEBUG y superiores en un archivo y enviar mensajes con nivel INFO y superior a la consola. Además, suponga que desea grabar una marca de tiempo en el archivo y no imprimirlo en la consola. Puede lograr este comportamiento haciendo lo siguiente:

import logging

# set up logging to file - see previous section for more details
logging.basicConfig(level=logging.DEBUG,
                    format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s',
                    datefmt='%m-%d %H:%M',
                    filename='/tmp/myapp.log',
                    filemode='w')
# define a Handler which writes INFO messages or higher to the sys.stderr
console = logging.StreamHandler()
console.setLevel(logging.INFO)
# set a format which is simpler for console use
formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')
# tell the handler to use this format
console.setFormatter(formatter)
# add the handler to the root logger
logging.getLogger('').addHandler(console)

# Now, we can log to the root logger, or any other logger. First the root...
logging.info('Jackdaws love my big sphinx of quartz.')

# Now, define a couple of other loggers which might represent areas in your
# application:

logger1 = logging.getLogger('myapp.area1')
logger2 = logging.getLogger('myapp.area2')

logger1.debug('Quick zephyrs blow, vexing daft Jim.')
logger1.info('How quickly daft jumping zebras vex.')
logger2.warning('Jail zesty vixen who grabbed pay from quack.')
logger2.error('The five boxing wizards jump quickly.')

Cuando ejecute esto, en la consola verá

root        : INFO     Jackdaws love my big sphinx of quartz.
myapp.area1 : INFO     How quickly daft jumping zebras vex.
myapp.area2 : WARNING  Jail zesty vixen who grabbed pay from quack.
myapp.area2 : ERROR    The five boxing wizards jump quickly.

y en el archivo verá algo como

10-22 22:19 root         INFO     Jackdaws love my big sphinx of quartz.
10-22 22:19 myapp.area1  DEBUG    Quick zephyrs blow, vexing daft Jim.
10-22 22:19 myapp.area1  INFO     How quickly daft jumping zebras vex.
10-22 22:19 myapp.area2  WARNING  Jail zesty vixen who grabbed pay from quack.
10-22 22:19 myapp.area2  ERROR    The five boxing wizards jump quickly.

Como se puede ver, el mensaje DEBUG sólo se muestra en el archivo. Los otros mensajes se envían a los dos destinos.

Este ejemplo usa gestores de consola y archivos, pero puede usar cualquier número y combinación de los gestores que elija.

Tenga en cuenta que la elección anterior del nombre del archivo de registro /tmp/myapp.log implica el uso de una ubicación estándar para los archivos temporales en los sistemas POSIX. En Windows, es posible que tenga que elegir un nombre de directorio diferente para el registro - sólo asegúrese de que el directorio existe y que tiene los permisos para crear y actualizar archivos en él.

Gestión personalizada de niveles

A veces, es posible que desee hacer algo ligeramente diferente del manejo estándar de niveles, donde todos los niveles por encima de un umbral son procesados por un gestor. Para ello, es necesario utilizar filtros. Veamos un escenario en el que se desea organizar las cosas de la siguiente manera:

  • Enviar mensajes de gravedad INFO y WARNING a sys.stdout

  • Enviar mensajes de gravedad ERROR y superiores a sys.stderr

  • Envía los mensajes de gravedad DEBUG y superiores al archivo app.log

Supongamos que se configura el registro con el siguiente JSON:

{
    "version": 1,
    "disable_existing_loggers": false,
    "formatters": {
        "simple": {
            "format": "%(levelname)-8s - %(message)s"
        }
    },
    "handlers": {
        "stdout": {
            "class": "logging.StreamHandler",
            "level": "INFO",
            "formatter": "simple",
            "stream": "ext://sys.stdout"
        },
        "stderr": {
            "class": "logging.StreamHandler",
            "level": "ERROR",
            "formatter": "simple",
            "stream": "ext://sys.stderr"
        },
        "file": {
            "class": "logging.FileHandler",
            "formatter": "simple",
            "filename": "app.log",
            "mode": "w"
        }
    },
    "root": {
        "level": "DEBUG",
        "handlers": [
            "stderr",
            "stdout",
            "file"
        ]
    }
}

Esta configuración hace casi lo que queremos, excepto que sys.stdout mostraría mensajes de gravedad ERROR y superiores, así como mensajes INFO y WARNING. Para evitarlo, podemos configurar un filtro que excluya esos mensajes y añadirlo al gestor correspondiente. Esto se puede configurar añadiendo una sección filters paralela a formatters y handlers:

{
    "filters": {
        "warnings_and_below": {
            "()" : "__main__.filter_maker",
            "level": "WARNING"
        }
    }
}

y cambiando la sección del gestor stdout para añadirlo:

{
    "stdout": {
        "class": "logging.StreamHandler",
        "level": "INFO",
        "formatter": "simple",
        "stream": "ext://sys.stdout",
        "filters": ["warnings_and_below"]
    }
}

Un filtro no es más que una función, por lo que podemos definir el filter_maker (una función de fábrica) como sigue:

def filter_maker(level):
    level = getattr(logging, level)

    def filter(record):
        return record.levelno <= level

    return filter

Esto convierte el argumento de la cadena de caracteres pasada en un nivel numérico, y retorna una función que sólo retorna True si el nivel del registro pasado está en o por debajo del nivel especificado. Ten en cuenta que en este ejemplo se ha definido el filter_maker en un script de prueba main.py que se ejecuta desde la línea de comandos, por lo que su módulo será __main__ - de ahí el __main__.filter_maker en la configuración del filtro. Tendrás que cambiar eso si lo defines en un módulo diferente.

Con el filtro añadido, podemos ejecutar main.py, que en su totalidad es:

import json
import logging
import logging.config

CONFIG = '''
{
    "version": 1,
    "disable_existing_loggers": false,
    "formatters": {
        "simple": {
            "format": "%(levelname)-8s - %(message)s"
        }
    },
    "filters": {
        "warnings_and_below": {
            "()" : "__main__.filter_maker",
            "level": "WARNING"
        }
    },
    "handlers": {
        "stdout": {
            "class": "logging.StreamHandler",
            "level": "INFO",
            "formatter": "simple",
            "stream": "ext://sys.stdout",
            "filters": ["warnings_and_below"]
        },
        "stderr": {
            "class": "logging.StreamHandler",
            "level": "ERROR",
            "formatter": "simple",
            "stream": "ext://sys.stderr"
        },
        "file": {
            "class": "logging.FileHandler",
            "formatter": "simple",
            "filename": "app.log",
            "mode": "w"
        }
    },
    "root": {
        "level": "DEBUG",
        "handlers": [
            "stderr",
            "stdout",
            "file"
        ]
    }
}
'''

def filter_maker(level):
    level = getattr(logging, level)

    def filter(record):
        return record.levelno <= level

    return filter

logging.config.dictConfig(json.loads(CONFIG))
logging.debug('A DEBUG message')
logging.info('An INFO message')
logging.warning('A WARNING message')
logging.error('An ERROR message')
logging.critical('A CRITICAL message')

Y después de ejecutarlo de esta manera:

python main.py 2>stderr.log >stdout.log

Podemos ver que los resultados son los esperados:

$ more *.log
::::::::::::::
app.log
::::::::::::::
DEBUG    - A DEBUG message
INFO     - An INFO message
WARNING  - A WARNING message
ERROR    - An ERROR message
CRITICAL - A CRITICAL message
::::::::::::::
stderr.log
::::::::::::::
ERROR    - An ERROR message
CRITICAL - A CRITICAL message
::::::::::::::
stdout.log
::::::::::::::
INFO     - An INFO message
WARNING  - A WARNING message

Ejemplo de servidor de configuración

Aquí hay un ejemplo de un módulo que usa el servidor de configuración logging:

import logging
import logging.config
import time
import os

# read initial config file
logging.config.fileConfig('logging.conf')

# create and start listener on port 9999
t = logging.config.listen(9999)
t.start()

logger = logging.getLogger('simpleExample')

try:
    # loop through logging calls to see the difference
    # new configurations make, until Ctrl+C is pressed
    while True:
        logger.debug('debug message')
        logger.info('info message')
        logger.warning('warn message')
        logger.error('error message')
        logger.critical('critical message')
        time.sleep(5)
except KeyboardInterrupt:
    # cleanup
    logging.config.stopListening()
    t.join()

Y aquí hay un script que toma un nombre de archivo y envía ese archivo al servidor, precedido adecuadamente con la longitud codificada en binario, como la nueva configuración de logging:

#!/usr/bin/env python
import socket, sys, struct

with open(sys.argv[1], 'rb') as f:
    data_to_send = f.read()

HOST = 'localhost'
PORT = 9999
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print('connecting...')
s.connect((HOST, PORT))
print('sending config...')
s.send(struct.pack('>L', len(data_to_send)))
s.send(data_to_send)
s.close()
print('complete')

Tratar con gestores que bloquean

A veces tiene que hacer que sus gestores de registro hagan su trabajo sin bloquear el hilo desde el que está iniciando sesión. Esto es común en las aplicaciones web, aunque, por supuesto, también ocurre en otros escenarios.

Un responsable habitual que ejemplifica un comportamiento lento es la SMTPHandler: el envío de correos electrónicos puede llevar mucho tiempo, por varias razones fuera del control del desarrollador (por ejemplo, una infraestructura de red o correo de bajo rendimiento). Pero casi cualquier controlador basado en red puede bloquear: incluso una operación SocketHandler puede estar haciendo a bajo nivel una consulta DNS que es demasiado lenta (y esta consulta puede estar en el código de la biblioteca de socket, debajo de la capa de Python, y fuera de su control).

Una solución es utilizar un enfoque de dos partes. Para la primera parte, adjunte solo una QueueHandler a los loggers que se acceden desde subprocesos críticos de rendimiento. Simplemente escriben en su cola, que puede dimensionarse a una capacidad lo suficientemente grande o inicializarse sin límite superior a su tamaño. La escritura en la cola generalmente se aceptará rápidamente, aunque es probable que deba atrapar la excepción queue.Full como precaución en su código. Si usted es un desarrollador de bibliotecas que tiene subprocesos críticos de rendimiento en su código, asegúrese de documentar esto (junto con una sugerencia de adjuntar solo QueueHandlers a sus loggers) para el beneficio de otros desarrolladores que usarán su código.

La segunda parte de la solución es QueueListener, que fue designado como la contraparte de QueueHandler. Un QueueListener es muy simple: ha pasado una cola y algunos gestores, y activa un hilo interno que escucha su cola para LogRecords enviados desde QueueHandlers (o cualquier otra fuente de LogRecords, para el caso). Los LogRecords se eliminan de la cola y se pasan a los gestores para su procesamiento.

La ventaja de tener una clase separada QueueListener es que puede usar la misma instancia para dar servicio a múltiples QueueHandlers. Esto es más amigable con los recursos que, por ejemplo, tener versiones enhebradas de las clases de gestores existentes, que consumirían un hilo por gestor sin ningún beneficio particular.

Un ejemplo del uso de estas dos clases a continuación (se omiten imports):

que = queue.Queue(-1)  # no limit on size
queue_handler = QueueHandler(que)
handler = logging.StreamHandler()
listener = QueueListener(que, handler)
root = logging.getLogger()
root.addHandler(queue_handler)
formatter = logging.Formatter('%(threadName)s: %(message)s')
handler.setFormatter(formatter)
listener.start()
# The log output will display the thread which generated
# the event (the main thread) rather than the internal
# thread which monitors the internal queue. This is what
# you want to happen.
root.warning('Look out!')
listener.stop()

que, cuando se ejecuta, producirá:

MainThread: Look out!

Nota

Aunque la discusión anterior no se refería específicamente al código asíncrono, sino más bien a los gestores de logging lentos, hay que tener en cuenta que cuando se realiza logging desde código asíncrono, los gestores de red e incluso de archivos podrían dar problemas (bloqueo del bucle de eventos) porque parte del logging se realiza desde los internos de asyncio. Podría ser mejor, si se utiliza cualquier código asíncrono en una aplicación, utilizar el enfoque anterior para el logging, de modo que cualquier código de bloqueo se ejecute sólo en el hilo QueueListener.

Distinto en la versión 3.5: Antes de Python 3.5, QueueListener siempre pasaba cada mensaje recibido de la cola a cada controlador con el que se inicializaba. (Esto se debió a que se asumió que el filtrado de nivel se realizó en el otro lado, donde se llena la cola). A partir de 3.5, este comportamiento se puede cambiar pasando un argumento de palabra clave respect_handler_level=True al constructor del oyente . Cuando se hace esto, el oyente compara el nivel de cada mensaje con el nivel del controlador y solo pasa un mensaje a un controlador si es apropiado hacerlo.

Enviar y recibir eventos logging a través de una red

Supongamos que desea enviar eventos de registro a través de una red y gestionarlos en el extremo receptor. Una forma sencilla de hacer esto es adjuntar una instancia de SocketHandler al registrador raíz en el extremo de envío:

import logging, logging.handlers

rootLogger = logging.getLogger('')
rootLogger.setLevel(logging.DEBUG)
socketHandler = logging.handlers.SocketHandler('localhost',
                    logging.handlers.DEFAULT_TCP_LOGGING_PORT)
# don't bother with a formatter, since a socket handler sends the event as
# an unformatted pickle
rootLogger.addHandler(socketHandler)

# Now, we can log to the root logger, or any other logger. First the root...
logging.info('Jackdaws love my big sphinx of quartz.')

# Now, define a couple of other loggers which might represent areas in your
# application:

logger1 = logging.getLogger('myapp.area1')
logger2 = logging.getLogger('myapp.area2')

logger1.debug('Quick zephyrs blow, vexing daft Jim.')
logger1.info('How quickly daft jumping zebras vex.')
logger2.warning('Jail zesty vixen who grabbed pay from quack.')
logger2.error('The five boxing wizards jump quickly.')

En el extremo receptor, puede configurar un receptor usando el módulo socketserver. Aquí hay un ejemplo básico de trabajo:

import pickle
import logging
import logging.handlers
import socketserver
import struct


class LogRecordStreamHandler(socketserver.StreamRequestHandler):
    """Handler for a streaming logging request.

    This basically logs the record using whatever logging policy is
    configured locally.
    """

    def handle(self):
        """
        Handle multiple requests - each expected to be a 4-byte length,
        followed by the LogRecord in pickle format. Logs the record
        according to whatever policy is configured locally.
        """
        while True:
            chunk = self.connection.recv(4)
            if len(chunk) < 4:
                break
            slen = struct.unpack('>L', chunk)[0]
            chunk = self.connection.recv(slen)
            while len(chunk) < slen:
                chunk = chunk + self.connection.recv(slen - len(chunk))
            obj = self.unPickle(chunk)
            record = logging.makeLogRecord(obj)
            self.handleLogRecord(record)

    def unPickle(self, data):
        return pickle.loads(data)

    def handleLogRecord(self, record):
        # if a name is specified, we use the named logger rather than the one
        # implied by the record.
        if self.server.logname is not None:
            name = self.server.logname
        else:
            name = record.name
        logger = logging.getLogger(name)
        # N.B. EVERY record gets logged. This is because Logger.handle
        # is normally called AFTER logger-level filtering. If you want
        # to do filtering, do it at the client end to save wasting
        # cycles and network bandwidth!
        logger.handle(record)

class LogRecordSocketReceiver(socketserver.ThreadingTCPServer):
    """
    Simple TCP socket-based logging receiver suitable for testing.
    """

    allow_reuse_address = True

    def __init__(self, host='localhost',
                 port=logging.handlers.DEFAULT_TCP_LOGGING_PORT,
                 handler=LogRecordStreamHandler):
        socketserver.ThreadingTCPServer.__init__(self, (host, port), handler)
        self.abort = 0
        self.timeout = 1
        self.logname = None

    def serve_until_stopped(self):
        import select
        abort = 0
        while not abort:
            rd, wr, ex = select.select([self.socket.fileno()],
                                       [], [],
                                       self.timeout)
            if rd:
                self.handle_request()
            abort = self.abort

def main():
    logging.basicConfig(
        format='%(relativeCreated)5d %(name)-15s %(levelname)-8s %(message)s')
    tcpserver = LogRecordSocketReceiver()
    print('About to start TCP server...')
    tcpserver.serve_until_stopped()

if __name__ == '__main__':
    main()

Primero ejecuta el servidor, y luego el cliente. Del lado del cliente, nada se imprime en la consola; del lado del servidor, se debería ver algo como esto:

About to start TCP server...
   59 root            INFO     Jackdaws love my big sphinx of quartz.
   59 myapp.area1     DEBUG    Quick zephyrs blow, vexing daft Jim.
   69 myapp.area1     INFO     How quickly daft jumping zebras vex.
   69 myapp.area2     WARNING  Jail zesty vixen who grabbed pay from quack.
   69 myapp.area2     ERROR    The five boxing wizards jump quickly.

Note that there are some security issues with pickle in some scenarios. If these affect you, you can use an alternative serialization scheme by overriding the makePickle() method and implementing your alternative there, as well as adapting the above script to use your alternative serialization.

Ejecutando un logging de socket oyente en producción

To run a logging listener in production, you may need to use a process-management tool such as Supervisor. Here is a Gist which provides the bare-bones files to run the above functionality using Supervisor. It consists of the following files:

File

Purpose

prepare.sh

A Bash script to prepare the environment for testing

supervisor.conf

The Supervisor configuration file, which has entries for the listener and a multi-process web application

ensure_app.sh

A Bash script to ensure that Supervisor is running with the above configuration

log_listener.py

The socket listener program which receives log events and records them to a file

main.py

A simple web application which performs logging via a socket connected to the listener

webapp.json

A JSON configuration file for the web application

client.py

A Python script to exercise the web application

The web application uses Gunicorn, which is a popular web application server that starts multiple worker processes to handle requests. This example setup shows how the workers can write to the same log file without conflicting with one another — they all go through the socket listener.

To test these files, do the following in a POSIX environment:

  1. Download the Gist as a ZIP archive using the Download ZIP button.

  2. Unzip the above files from the archive into a scratch directory.

  3. In the scratch directory, run bash prepare.sh to get things ready. This creates a run subdirectory to contain Supervisor-related and log files, and a venv subdirectory to contain a virtual environment into which bottle, gunicorn and supervisor are installed.

  4. Run bash ensure_app.sh to ensure that Supervisor is running with the above configuration.

  5. Run venv/bin/python client.py to exercise the web application, which will lead to records being written to the log.

  6. Inspect the log files in the run subdirectory. You should see the most recent log lines in files matching the pattern app.log*. They won’t be in any particular order, since they have been handled concurrently by different worker processes in a non-deterministic way.

  7. You can shut down the listener and the web application by running venv/bin/supervisorctl -c supervisor.conf shutdown.

You may need to tweak the configuration files in the unlikely event that the configured ports clash with something else in your test environment.

Agregar información contextual a su salida de logging

A veces, desea que la salida de logging contenga información contextual además de los parámetros pasados a la llamada del logging. Por ejemplo, en una aplicación en red, puede ser conveniente registrar información específica del cliente en el logging (por ejemplo, el nombre de usuario del cliente remoto o la dirección IP). Aunque puede usar el parámetro extra para lograr esto, no siempre es conveniente pasar la información de esta manera. Si bien puede resultar tentador crear instancias Logger por conexión, esta no es una buena idea porque estas instancias no se liberan de memoria vía el recolector de basura (garbage collector). Si bien esto no es un problema en la práctica, cuando el número de instancias de Logger depende del nivel de granularidad que desea usar para hacer el logging de una aplicación, podría ser difícil de administrar si el número de instancias Logger se vuelven efectivamente ilimitadas.

Uso de LoggerAdapters para impartir información contextual

Una manera fácil de pasar información contextual para que se genere junto con la información de eventos logging es usar la clase LoggerAdapter. Esta clase está diseñada para parecerse a Logger, de modo que pueda llamar debug(), info(), warning(), error(), excepción(), critical() y log(). Estos métodos tienen las mismas signaturas que sus contrapartes en Logger, por lo que puede usar los dos tipos de instancias indistintamente.

Cuando creas una instancia de LoggerAdapter, le pasas una instancia de Logger y un objeto similar a un dict que contiene tu información contextual. Cuando llamas a uno de los métodos de registro en una instancia de LoggerAdapter, delega la llamada a la instancia subyacente de Logger pasada a su constructor, y se arregla para pasar la información contextual en la llamada delegada . Aquí hay un fragmento del código de LoggerAdapter:

def debug(self, msg, /, *args, **kwargs):
    """
    Delegate a debug call to the underlying logger, after adding
    contextual information from this adapter instance.
    """
    msg, kwargs = self.process(msg, kwargs)
    self.logger.debug(msg, *args, **kwargs)

El método process() de LoggerAdapter es donde la información contextual se agrega a la salida del logging. Se pasa el mensaje y los argumentos de palabra clave de la llamada logging, y retorna versiones (potencialmente) modificadas de estos para usar en la llamada al logging subyacente. La implementación predeterminada de este método deja el mensaje solo, pero inserta una clave “extra” en el argumento de palabra clave cuyo valor es el objeto tipo dict pasado al constructor. Por supuesto, si ha pasado un argumento de palabra clave “extra” en la llamada al adaptador, se sobrescribirá silenciosamente.

La ventaja de usar “extra” es que los valores en el objeto dict se combinan en la instancia LogRecord __dict__, lo que le permite usar cadenas personalizadas con sus instancias Formatter que conocen las claves del objeto dict. Si necesita un método diferente, por ejemplo, si desea anteponer o agregar la información contextual a la cadena del mensaje, solo necesita la subclase LoggerAdapter y anular process() para hacer lo que necesita. Aquí hay un ejemplo simple:

class CustomAdapter(logging.LoggerAdapter):
    """
    This example adapter expects the passed in dict-like object to have a
    'connid' key, whose value in brackets is prepended to the log message.
    """
    def process(self, msg, kwargs):
        return '[%s] %s' % (self.extra['connid'], msg), kwargs

que puede usar así:

logger = logging.getLogger(__name__)
adapter = CustomAdapter(logger, {'connid': some_conn_id})

Luego, cualquier evento que registre en el adaptador tendrá el valor de some_conn_id antepuesto a los mensajes de logging.

Usar objetos distintos a los diccionarios para transmitir información contextual

No es necesario pasar un diccionario real a la LoggerAdapter - puedes pasar una instancia de una clase que implemente __getitem__ y __iter__ de modo que parezca un diccionario para el logging. Esto es útil si quieres generar valores dinámicamente (mientras que los valores en un diccionario son constantes).

Usar filtros para impartir información contextual

También puedes agregar información contextual a la salida del log utilizando un Filter definido por el usuario. Las instancias de Filter pueden modificar los LogRecords que se les pasan, incluido el agregado de atributos adicionales que luego se pueden generar utilizando cadena de caracteres con el formato adecuado, o si es necesario, un Formatter personalizado.

Por ejemplo, en una aplicación web, la solicitud que se está procesando (o al menos, las partes interesantes de la misma) se pueden almacenar en una variable threadlocal (threading.local) y luego se puede acceder a ella desde Filter para agregar información de la solicitud, - digamos, la dirección IP remota y el nombre de usuario-, al LogRecord, usando los nombres de atributo “ip” y “user” como en el ejemplo anterior de LoggerAdapter. En ese caso, se puede usar el mismo formato de cadena de caracteres para obtener un resultado similar al que se muestra arriba. Aquí hay un script de ejemplo:

import logging
from random import choice

class ContextFilter(logging.Filter):
    """
    This is a filter which injects contextual information into the log.

    Rather than use actual contextual information, we just use random
    data in this demo.
    """

    USERS = ['jim', 'fred', 'sheila']
    IPS = ['123.231.231.123', '127.0.0.1', '192.168.0.1']

    def filter(self, record):

        record.ip = choice(ContextFilter.IPS)
        record.user = choice(ContextFilter.USERS)
        return True

if __name__ == '__main__':
    levels = (logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR, logging.CRITICAL)
    logging.basicConfig(level=logging.DEBUG,
                        format='%(asctime)-15s %(name)-5s %(levelname)-8s IP: %(ip)-15s User: %(user)-8s %(message)s')
    a1 = logging.getLogger('a.b.c')
    a2 = logging.getLogger('d.e.f')

    f = ContextFilter()
    a1.addFilter(f)
    a2.addFilter(f)
    a1.debug('A debug message')
    a1.info('An info message with %s', 'some parameters')
    for x in range(10):
        lvl = choice(levels)
        lvlname = logging.getLevelName(lvl)
        a2.log(lvl, 'A message at %s level with %d %s', lvlname, 2, 'parameters')

que cuando se ejecuta, produce algo como:

2010-09-06 22:38:15,292 a.b.c DEBUG    IP: 123.231.231.123 User: fred     A debug message
2010-09-06 22:38:15,300 a.b.c INFO     IP: 192.168.0.1     User: sheila   An info message with some parameters
2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 127.0.0.1       User: sheila   A message at CRITICAL level with 2 parameters
2010-09-06 22:38:15,300 d.e.f ERROR    IP: 127.0.0.1       User: jim      A message at ERROR level with 2 parameters
2010-09-06 22:38:15,300 d.e.f DEBUG    IP: 127.0.0.1       User: sheila   A message at DEBUG level with 2 parameters
2010-09-06 22:38:15,300 d.e.f ERROR    IP: 123.231.231.123 User: fred     A message at ERROR level with 2 parameters
2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 192.168.0.1     User: jim      A message at CRITICAL level with 2 parameters
2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 127.0.0.1       User: sheila   A message at CRITICAL level with 2 parameters
2010-09-06 22:38:15,300 d.e.f DEBUG    IP: 192.168.0.1     User: jim      A message at DEBUG level with 2 parameters
2010-09-06 22:38:15,301 d.e.f ERROR    IP: 127.0.0.1       User: sheila   A message at ERROR level with 2 parameters
2010-09-06 22:38:15,301 d.e.f DEBUG    IP: 123.231.231.123 User: fred     A message at DEBUG level with 2 parameters
2010-09-06 22:38:15,301 d.e.f INFO     IP: 123.231.231.123 User: fred     A message at INFO level with 2 parameters

Uso de contextvars

Desde la versión 3.7 de Python, el módulo contextvars ha proporcionado almacenamiento local de contexto que funciona tanto para las necesidades de procesamiento de threading como de asyncio. Este tipo de almacenamiento puede ser, por tanto, preferible a los hilos locales. El siguiente ejemplo muestra cómo, en un entorno multihilo, los logs pueden rellenarse con información contextual como, por ejemplo, los atributos de las peticiones gestionadas por las aplicaciones web.

A modo de ilustración, digamos que tienes diferentes aplicaciones web, cada una de ellas independiente de la otra, pero que se ejecutan en el mismo proceso de Python y utilizan una biblioteca común a todas ellas. ¿Cómo puede cada una de estas aplicaciones tener su propio registro, donde todos los mensajes de logging de la biblioteca (y otro código de procesamiento de solicitudes) se dirigen al archivo de registro de la aplicación apropiada, mientras se incluye en el registro información contextual adicional como la IP del cliente, el método de solicitud HTTP y el nombre de usuario del cliente?

Supongamos que la biblioteca se puede simular con el siguiente código:

# webapplib.py
import logging
import time

logger = logging.getLogger(__name__)

def useful():
    # Just a representative event logged from the library
    logger.debug('Hello from webapplib!')
    # Just sleep for a bit so other threads get to run
    time.sleep(0.01)

Podemos simular las aplicaciones web múltiples mediante dos clases simples, Request y WebApp. Éstas simulan cómo funcionan las aplicaciones web reales con hilos, cada petición es manejada por un hilo:

# main.py
import argparse
from contextvars import ContextVar
import logging
import os
from random import choice
import threading
import webapplib

logger = logging.getLogger(__name__)
root = logging.getLogger()
root.setLevel(logging.DEBUG)

class Request:
    """
    A simple dummy request class which just holds dummy HTTP request method,
    client IP address and client username
    """
    def __init__(self, method, ip, user):
        self.method = method
        self.ip = ip
        self.user = user

# A dummy set of requests which will be used in the simulation - we'll just pick
# from this list randomly. Note that all GET requests are from 192.168.2.XXX
# addresses, whereas POST requests are from 192.16.3.XXX addresses. Three users
# are represented in the sample requests.

REQUESTS = [
    Request('GET', '192.168.2.20', 'jim'),
    Request('POST', '192.168.3.20', 'fred'),
    Request('GET', '192.168.2.21', 'sheila'),
    Request('POST', '192.168.3.21', 'jim'),
    Request('GET', '192.168.2.22', 'fred'),
    Request('POST', '192.168.3.22', 'sheila'),
]

# Note that the format string includes references to request context information
# such as HTTP method, client IP and username

formatter = logging.Formatter('%(threadName)-11s %(appName)s %(name)-9s %(user)-6s %(ip)s %(method)-4s %(message)s')

# Create our context variables. These will be filled at the start of request
# processing, and used in the logging that happens during that processing

ctx_request = ContextVar('request')
ctx_appname = ContextVar('appname')

class InjectingFilter(logging.Filter):
    """
    A filter which injects context-specific information into logs and ensures
    that only information for a specific webapp is included in its log
    """
    def __init__(self, app):
        self.app = app

    def filter(self, record):
        request = ctx_request.get()
        record.method = request.method
        record.ip = request.ip
        record.user = request.user
        record.appName = appName = ctx_appname.get()
        return appName == self.app.name

class WebApp:
    """
    A dummy web application class which has its own handler and filter for a
    webapp-specific log.
    """
    def __init__(self, name):
        self.name = name
        handler = logging.FileHandler(name + '.log', 'w')
        f = InjectingFilter(self)
        handler.setFormatter(formatter)
        handler.addFilter(f)
        root.addHandler(handler)
        self.num_requests = 0

    def process_request(self, request):
        """
        This is the dummy method for processing a request. It's called on a
        different thread for every request. We store the context information into
        the context vars before doing anything else.
        """
        ctx_request.set(request)
        ctx_appname.set(self.name)
        self.num_requests += 1
        logger.debug('Request processing started')
        webapplib.useful()
        logger.debug('Request processing finished')

def main():
    fn = os.path.splitext(os.path.basename(__file__))[0]
    adhf = argparse.ArgumentDefaultsHelpFormatter
    ap = argparse.ArgumentParser(formatter_class=adhf, prog=fn,
                                 description='Simulate a couple of web '
                                             'applications handling some '
                                             'requests, showing how request '
                                             'context can be used to '
                                             'populate logs')
    aa = ap.add_argument
    aa('--count', '-c', type=int, default=100, help='How many requests to simulate')
    options = ap.parse_args()

    # Create the dummy webapps and put them in a list which we can use to select
    # from randomly
    app1 = WebApp('app1')
    app2 = WebApp('app2')
    apps = [app1, app2]
    threads = []
    # Add a common handler which will capture all events
    handler = logging.FileHandler('app.log', 'w')
    handler.setFormatter(formatter)
    root.addHandler(handler)

    # Generate calls to process requests
    for i in range(options.count):
        try:
            # Pick an app at random and a request for it to process
            app = choice(apps)
            request = choice(REQUESTS)
            # Process the request in its own thread
            t = threading.Thread(target=app.process_request, args=(request,))
            threads.append(t)
            t.start()
        except KeyboardInterrupt:
            break

    # Wait for the threads to terminate
    for t in threads:
        t.join()

    for app in apps:
        print('%s processed %s requests' % (app.name, app.num_requests))

if __name__ == '__main__':
    main()

Si ejecuta lo anterior, debería encontrar que aproximadamente la mitad de las peticiones van a app1.log y el resto a app2.log, y las todas las peticiones se registran en app.log. Cada registro específico de la aplicación web contendrá únicamente entradas de log para esa aplicación web, y la información de las peticiones se mostrará de forma consistente en el registro (es decir, la información de cada petición ficticia aparecerá siempre junta en una línea de log). Esto se ilustra con la siguiente salida del shell:

~/logging-contextual-webapp$ python main.py
app1 processed 51 requests
app2 processed 49 requests
~/logging-contextual-webapp$ wc -l *.log
  153 app1.log
  147 app2.log
  300 app.log
  600 total
~/logging-contextual-webapp$ head -3 app1.log
Thread-3 (process_request) app1 __main__  jim    192.168.3.21 POST Request processing started
Thread-3 (process_request) app1 webapplib jim    192.168.3.21 POST Hello from webapplib!
Thread-5 (process_request) app1 __main__  jim    192.168.3.21 POST Request processing started
~/logging-contextual-webapp$ head -3 app2.log
Thread-1 (process_request) app2 __main__  sheila 192.168.2.21 GET  Request processing started
Thread-1 (process_request) app2 webapplib sheila 192.168.2.21 GET  Hello from webapplib!
Thread-2 (process_request) app2 __main__  jim    192.168.2.20 GET  Request processing started
~/logging-contextual-webapp$ head app.log
Thread-1 (process_request) app2 __main__  sheila 192.168.2.21 GET  Request processing started
Thread-1 (process_request) app2 webapplib sheila 192.168.2.21 GET  Hello from webapplib!
Thread-2 (process_request) app2 __main__  jim    192.168.2.20 GET  Request processing started
Thread-3 (process_request) app1 __main__  jim    192.168.3.21 POST Request processing started
Thread-2 (process_request) app2 webapplib jim    192.168.2.20 GET  Hello from webapplib!
Thread-3 (process_request) app1 webapplib jim    192.168.3.21 POST Hello from webapplib!
Thread-4 (process_request) app2 __main__  fred   192.168.2.22 GET  Request processing started
Thread-5 (process_request) app1 __main__  jim    192.168.3.21 POST Request processing started
Thread-4 (process_request) app2 webapplib fred   192.168.2.22 GET  Hello from webapplib!
Thread-6 (process_request) app1 __main__  jim    192.168.3.21 POST Request processing started
~/logging-contextual-webapp$ grep app1 app1.log | wc -l
153
~/logging-contextual-webapp$ grep app2 app2.log | wc -l
147
~/logging-contextual-webapp$ grep app1 app.log | wc -l
153
~/logging-contextual-webapp$ grep app2 app.log | wc -l
147

Impartir información contextual en los gestores

Cada Handler tiene su propia cadena de filtros. Si quieres añadir información contextual a una LogRecord sin filtrarla a otros gestores, puedes utilizar un filtro que retorna una nueva LogRecord en lugar de modificarlo in situ, como se muestra en el siguiente script:

import copy
import logging

def filter(record: logging.LogRecord):
    record = copy.copy(record)
    record.user = 'jim'
    return record

if __name__ == '__main__':
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)
    handler = logging.StreamHandler()
    formatter = logging.Formatter('%(message)s from %(user)-8s')
    handler.setFormatter(formatter)
    handler.addFilter(filter)
    logger.addHandler(handler)

    logger.info('A log message')

Logging a un sólo archivo desde múltiples procesos

Aunque logging es seguro para hilos, y el logging a un solo archivo desde múltiples hilos en un solo proceso es compatible, el logging en un solo archivo desde múltiples procesos no es compatible, porque no existe una forma estándar de serializar el acceso a un solo archivo en múltiples procesos en Python. Si necesita hacer esto último, una forma de abordarlo es hacer que todos los procesos se registren en una SocketHandler, y tener un proceso separado que implemente un servidor de socket que lee del socket y los loggings para archivar. (Si lo prefiere, puede dedicar un hilo en uno de los procesos existentes para realizar esta función.) Esta sección documenta este enfoque con más detalle e incluye un receptor socket que funciona que se puede utilizar como punto de partida para que se adapte a sus propias aplicaciones.

También puedes escribir tu propio gestor que use la clase Lock del módulo multiprocessing para serializar el acceso al archivo desde tus procesos. La existente FileHandler y las subclases no hacen uso de multiprocessing en la actualidad, aunque pueden hacerlo en el futuro. Tenga en cuenta que, en la actualidad, el módulo multiprocessing no proporciona la funcionalidad de bloqueo de trabajo en todas las plataformas (ver https://bugs.python.org/issue3770).

Alternativamente, puede usar una Queue y QueueHandler para enviar todos los logging a uno de los procesos en su aplicación multi-proceso. El siguiente script de ejemplo demuestra cómo puede hacer esto; en el ejemplo, un proceso de escucha independiente escucha los eventos enviados por otros procesos y los registra de acuerdo con su propia configuración de logging. Aunque el ejemplo solo demuestra una forma de hacerlo (por ejemplo, es posible que desee utilizar un hilo de escucha en lugar de un proceso de escucha separado; la implementación sería análoga), permite configuraciones de logging completamente diferentes para el oyente y los otros procesos en su aplicación. Y se puede utilizar como base para el código que cumpla con sus propios requisitos específicos:

# You'll need these imports in your own code
import logging
import logging.handlers
import multiprocessing

# Next two import lines for this demo only
from random import choice, random
import time

#
# Because you'll want to define the logging configurations for listener and workers, the
# listener and worker process functions take a configurer parameter which is a callable
# for configuring logging for that process. These functions are also passed the queue,
# which they use for communication.
#
# In practice, you can configure the listener however you want, but note that in this
# simple example, the listener does not apply level or filter logic to received records.
# In practice, you would probably want to do this logic in the worker processes, to avoid
# sending events which would be filtered out between processes.
#
# The size of the rotated files is made small so you can see the results easily.
def listener_configurer():
    root = logging.getLogger()
    h = logging.handlers.RotatingFileHandler('mptest.log', 'a', 300, 10)
    f = logging.Formatter('%(asctime)s %(processName)-10s %(name)s %(levelname)-8s %(message)s')
    h.setFormatter(f)
    root.addHandler(h)

# This is the listener process top-level loop: wait for logging events
# (LogRecords)on the queue and handle them, quit when you get a None for a
# LogRecord.
def listener_process(queue, configurer):
    configurer()
    while True:
        try:
            record = queue.get()
            if record is None:  # We send this as a sentinel to tell the listener to quit.
                break
            logger = logging.getLogger(record.name)
            logger.handle(record)  # No level or filter logic applied - just do it!
        except Exception:
            import sys, traceback
            print('Whoops! Problem:', file=sys.stderr)
            traceback.print_exc(file=sys.stderr)

# Arrays used for random selections in this demo

LEVELS = [logging.DEBUG, logging.INFO, logging.WARNING,
          logging.ERROR, logging.CRITICAL]

LOGGERS = ['a.b.c', 'd.e.f']

MESSAGES = [
    'Random message #1',
    'Random message #2',
    'Random message #3',
]

# The worker configuration is done at the start of the worker process run.
# Note that on Windows you can't rely on fork semantics, so each process
# will run the logging configuration code when it starts.
def worker_configurer(queue):
    h = logging.handlers.QueueHandler(queue)  # Just the one handler needed
    root = logging.getLogger()
    root.addHandler(h)
    # send all messages, for demo; no other level or filter logic applied.
    root.setLevel(logging.DEBUG)

# This is the worker process top-level loop, which just logs ten events with
# random intervening delays before terminating.
# The print messages are just so you know it's doing something!
def worker_process(queue, configurer):
    configurer(queue)
    name = multiprocessing.current_process().name
    print('Worker started: %s' % name)
    for i in range(10):
        time.sleep(random())
        logger = logging.getLogger(choice(LOGGERS))
        level = choice(LEVELS)
        message = choice(MESSAGES)
        logger.log(level, message)
    print('Worker finished: %s' % name)

# Here's where the demo gets orchestrated. Create the queue, create and start
# the listener, create ten workers and start them, wait for them to finish,
# then send a None to the queue to tell the listener to finish.
def main():
    queue = multiprocessing.Queue(-1)
    listener = multiprocessing.Process(target=listener_process,
                                       args=(queue, listener_configurer))
    listener.start()
    workers = []
    for i in range(10):
        worker = multiprocessing.Process(target=worker_process,
                                         args=(queue, worker_configurer))
        workers.append(worker)
        worker.start()
    for w in workers:
        w.join()
    queue.put_nowait(None)
    listener.join()

if __name__ == '__main__':
    main()

Una variante del script anterior mantiene el logging en el proceso principal, en un hilo separado:

import logging
import logging.config
import logging.handlers
from multiprocessing import Process, Queue
import random
import threading
import time

def logger_thread(q):
    while True:
        record = q.get()
        if record is None:
            break
        logger = logging.getLogger(record.name)
        logger.handle(record)


def worker_process(q):
    qh = logging.handlers.QueueHandler(q)
    root = logging.getLogger()
    root.setLevel(logging.DEBUG)
    root.addHandler(qh)
    levels = [logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR,
              logging.CRITICAL]
    loggers = ['foo', 'foo.bar', 'foo.bar.baz',
               'spam', 'spam.ham', 'spam.ham.eggs']
    for i in range(100):
        lvl = random.choice(levels)
        logger = logging.getLogger(random.choice(loggers))
        logger.log(lvl, 'Message no. %d', i)

if __name__ == '__main__':
    q = Queue()
    d = {
        'version': 1,
        'formatters': {
            'detailed': {
                'class': 'logging.Formatter',
                'format': '%(asctime)s %(name)-15s %(levelname)-8s %(processName)-10s %(message)s'
            }
        },
        'handlers': {
            'console': {
                'class': 'logging.StreamHandler',
                'level': 'INFO',
            },
            'file': {
                'class': 'logging.FileHandler',
                'filename': 'mplog.log',
                'mode': 'w',
                'formatter': 'detailed',
            },
            'foofile': {
                'class': 'logging.FileHandler',
                'filename': 'mplog-foo.log',
                'mode': 'w',
                'formatter': 'detailed',
            },
            'errors': {
                'class': 'logging.FileHandler',
                'filename': 'mplog-errors.log',
                'mode': 'w',
                'level': 'ERROR',
                'formatter': 'detailed',
            },
        },
        'loggers': {
            'foo': {
                'handlers': ['foofile']
            }
        },
        'root': {
            'level': 'DEBUG',
            'handlers': ['console', 'file', 'errors']
        },
    }
    workers = []
    for i in range(5):
        wp = Process(target=worker_process, name='worker %d' % (i + 1), args=(q,))
        workers.append(wp)
        wp.start()
    logging.config.dictConfig(d)
    lp = threading.Thread(target=logger_thread, args=(q,))
    lp.start()
    # At this point, the main process could do some useful work of its own
    # Once it's done that, it can wait for the workers to terminate...
    for wp in workers:
        wp.join()
    # And now tell the logging thread to finish up, too
    q.put(None)
    lp.join()

Esta variante muestra cómo puede, por ejemplo, aplicar la configuración para logging particulares: el registrador foo tiene un gestor especial que almacena todos los eventos en el subsistema foo en un archivo mplog-foo.log. Esto será utilizado por la maquinaria de logging en el proceso principal (aunque los eventos logging se generen en los procesos de trabajo) para dirigir los mensajes a los destinos apropiados.

Usando concurrent.futures.ProcessPoolExecutor

Si desea utilizar concurrent.futures.ProcessPoolExecutor para iniciar sus procesos de trabajo, debe crear la cola de manera ligeramente diferente. En vez de

queue = multiprocessing.Queue(-1)

debería usar

queue = multiprocessing.Manager().Queue(-1)  # also works with the examples above

y luego puede reemplazar la creación del trabajador de esto:

workers = []
for i in range(10):
    worker = multiprocessing.Process(target=worker_process,
                                     args=(queue, worker_configurer))
    workers.append(worker)
    worker.start()
for w in workers:
    w.join()

a esto (recuerda el primer import concurrent.futures):

with concurrent.futures.ProcessPoolExecutor(max_workers=10) as executor:
    for i in range(10):
        executor.submit(worker_process, queue, worker_configurer)

Despliegue de aplicaciones web con Gunicorn y uWSGI

Cuando se despliegan aplicaciones web utilizando Gunicorn o uWSGI (o similares), se crean múltiples procesos de trabajo para gestionar las peticiones de los clientes. En estos entornos, evite crear gestores basados directamente en archivos en su aplicación web. En su lugar, utilice un SocketHandler para registrar desde la aplicación web al oyente en un proceso separado. Esto puede configurarse usando una herramienta de gestión de procesos como Supervisor - vea Running a logging socket listener in production para más detalles.

Usando rotación de archivos

Sometimes you want to let a log file grow to a certain size, then open a new file and log to that. You may want to keep a certain number of these files, and when that many files have been created, rotate the files so that the number of files and the size of the files both remain bounded. For this usage pattern, the logging package provides a RotatingFileHandler:

import glob
import logging
import logging.handlers

LOG_FILENAME = 'logging_rotatingfile_example.out'

# Set up a specific logger with our desired output level
my_logger = logging.getLogger('MyLogger')
my_logger.setLevel(logging.DEBUG)

# Add the log message handler to the logger
handler = logging.handlers.RotatingFileHandler(
              LOG_FILENAME, maxBytes=20, backupCount=5)

my_logger.addHandler(handler)

# Log some messages
for i in range(20):
    my_logger.debug('i = %d' % i)

# See what files are created
logfiles = glob.glob('%s*' % LOG_FILENAME)

for filename in logfiles:
    print(filename)

El resultado debe ser 6 archivos separados, cada uno con parte del historial de log de la aplicación:

logging_rotatingfile_example.out
logging_rotatingfile_example.out.1
logging_rotatingfile_example.out.2
logging_rotatingfile_example.out.3
logging_rotatingfile_example.out.4
logging_rotatingfile_example.out.5

El archivo más actual siempre es logging_rotatingfile_example.out, y cada vez que alcanza el límite de tamaño, se le cambia el nombre con el sufijo .1. Se cambia el nombre de cada uno de los archivos de respaldo existentes para incrementar el sufijo (.1 se convierte en .2, etc.) y se borra el archivo .6.

Obviamente, este ejemplo establece la longitud del log demasiado pequeña como un ejemplo extremo. Se querrá establecer maxBytes en un valor apropiado.

Uso de estilos de formato alternativos

Cuando se agregó logging a la biblioteca estándar de Python, la única forma de formatear mensajes con contenido variable era usar el método de formateo %. Desde entonces, Python ha ganado dos nuevos enfoques de formato: string.Template (agregado en Python 2.4) y str.format() (agregado en Python 2.6).

Logging (a partir de la versión 3.2) proporciona un soporte mejorado para estos dos estilos de formato adicionales. La clase Formatter ha sido mejorada para tomar un parámetro de palabra clave adicional llamado style. El valor predeterminado es '%', pero otros valores posibles son '{' y '$', que corresponden a los otros dos estilos de formato. La compatibilidad con versiones anteriores se mantiene de forma predeterminada (como era de esperar), pero al especificar explícitamente un parámetro de estilo, tiene la capacidad de especificar cadenas de formato que funcionan con str.format() o string.Template. Aquí hay una sesión de consola de ejemplo para mostrar las posibilidades:

>>> import logging
>>> root = logging.getLogger()
>>> root.setLevel(logging.DEBUG)
>>> handler = logging.StreamHandler()
>>> bf = logging.Formatter('{asctime} {name} {levelname:8s} {message}',
...                        style='{')
>>> handler.setFormatter(bf)
>>> root.addHandler(handler)
>>> logger = logging.getLogger('foo.bar')
>>> logger.debug('This is a DEBUG message')
2010-10-28 15:11:55,341 foo.bar DEBUG    This is a DEBUG message
>>> logger.critical('This is a CRITICAL message')
2010-10-28 15:12:11,526 foo.bar CRITICAL This is a CRITICAL message
>>> df = logging.Formatter('$asctime $name ${levelname} $message',
...                        style='$')
>>> handler.setFormatter(df)
>>> logger.debug('This is a DEBUG message')
2010-10-28 15:13:06,924 foo.bar DEBUG This is a DEBUG message
>>> logger.critical('This is a CRITICAL message')
2010-10-28 15:13:11,494 foo.bar CRITICAL This is a CRITICAL message
>>>

Tenga en cuenta que el formato de logging para la salida final a los logs es completamente independiente de cómo se construye un mensaje de logging individual. Para eso todavía puede usar el formateo %, como se muestra aquí:

>>> logger.error('This is an%s %s %s', 'other,', 'ERROR,', 'message')
2010-10-28 15:19:29,833 foo.bar ERROR This is another, ERROR, message
>>>

Las llamadas de Logging (logger.debug(), logger.info(), etc.) solo toman parámetros posicionales para el mensaje de logging real en sí, los parámetros de palabras clave se usan solo para determinar opciones sobre cómo gestionar la llamada propiamente a Logging (por ejemplo, el parámetro de palabra clave exc_info para indicar que la información de rastreo debe registrarse, o el parámetro de palabra clave extra para indicar información contextual adicional que se agregará al log). Por lo tanto, no puede realizar llamadas de logging directamente usando la sintaxis str.format() o string.Template, porque internamente el paquete de logging usa formato % para fusionar la cadena de formato y los argumentos de las variables. No habría ningún cambio en esto mientras se conserva la compatibilidad con versiones anteriores, ya que todas las llamadas de logging que están en el código existente usarán cadenas de formato %.

Sin embargo, existe una forma en la que puede usar el formato {} - y $ - para construir sus mensajes de log individuales. Recuerde que para un mensaje puede usar un objeto arbitrario como una cadena de caracteres de formato de mensaje, y que el paquete logging llamará a str() en ese objeto para obtener la cadena de caracteres de formato real. Considere las siguientes dos clases:

class BraceMessage:
    def __init__(self, fmt, /, *args, **kwargs):
        self.fmt = fmt
        self.args = args
        self.kwargs = kwargs

    def __str__(self):
        return self.fmt.format(*self.args, **self.kwargs)

class DollarMessage:
    def __init__(self, fmt, /, **kwargs):
        self.fmt = fmt
        self.kwargs = kwargs

    def __str__(self):
        from string import Template
        return Template(self.fmt).substitute(**self.kwargs)

Cualquiera de estos puede usarse en lugar de una cadena de formato, para permitir que se use el formato {} - o $ - para construir la parte del «mensaje» real que aparece en la salida del log en lugar de «%(message)s» o «{message}» o «$message». Es un poco difícil de manejar usar los nombres de las clases siempre que quieras registrar algo, pero es bastante aceptable si usas un alias como __ (doble subrayado — no confundir con _, el subrayado simple usado como sinónimo/alias para gettext.gettext() o sus hermanos).

Las clases anteriores no están incluidas en Python, aunque son bastante fáciles de copiar y pegar en su propio código. Se pueden usar de la siguiente manera (asumiendo que están declaradas en un módulo llamado wherever):

>>> from wherever import BraceMessage as __
>>> print(__('Message with {0} {name}', 2, name='placeholders'))
Message with 2 placeholders
>>> class Point: pass
...
>>> p = Point()
>>> p.x = 0.5
>>> p.y = 0.5
>>> print(__('Message with coordinates: ({point.x:.2f}, {point.y:.2f})',
...       point=p))
Message with coordinates: (0.50, 0.50)
>>> from wherever import DollarMessage as __
>>> print(__('Message with $num $what', num=2, what='placeholders'))
Message with 2 placeholders
>>>

Si bien los ejemplos anteriores usan print() para mostrar cómo funciona el formateo, por supuesto usaría logger.debug() o similar para realmente registrar usando este enfoque.

One thing to note is that you pay no significant performance penalty with this approach: the actual formatting happens not when you make the logging call, but when (and if) the logged message is actually about to be output to a log by a handler. So the only slightly unusual thing which might trip you up is that the parentheses go around the format string and the arguments, not just the format string. That’s because the __ notation is just syntax sugar for a constructor call to one of the XXXMessage classes.

Si lo prefiere, puede usar LoggerAdapter para lograr un efecto similar al anterior, como en el siguiente ejemplo:

import logging

class Message:
    def __init__(self, fmt, args):
        self.fmt = fmt
        self.args = args

    def __str__(self):
        return self.fmt.format(*self.args)

class StyleAdapter(logging.LoggerAdapter):
    def __init__(self, logger, extra=None):
        super().__init__(logger, extra or {})

    def log(self, level, msg, /, *args, **kwargs):
        if self.isEnabledFor(level):
            msg, kwargs = self.process(msg, kwargs)
            self.logger._log(level, Message(msg, args), (), **kwargs)

logger = StyleAdapter(logging.getLogger(__name__))

def main():
    logger.debug('Hello, {}', 'world!')

if __name__ == '__main__':
    logging.basicConfig(level=logging.DEBUG)
    main()

El script anterior debería registrar el mensaje Hello, world! Cuando se ejecuta con Python 3.2 o posterior.

Personalización de LogRecord

Cada evento logging está representado por una instancia LogRecord. Cuando se registra un evento y no se filtra por el nivel de un registrador, se crea LogRecord, se llena con información sobre el evento y luego se pasa a los gestores de ese registrador (y sus antepasados, hasta (e incluyéndolo) el registrador donde se deshabilita una mayor propagación en la jerarquía). Antes de Python 3.2, solo había dos lugares donde se realizaba esta creación:

  • Logger.makeRecord(), que se llama en el proceso normal de logging de un evento. Esto invoca LogRecord directamente para crear una instancia.

  • makeLogRecord(), que se llama con un diccionario que contiene atributos que se agregarán al LogRecord. Esto se suele invocar cuando se ha recibido un diccionario adecuado a través de la red (por ejemplo, en forma de pickle a través de SocketHandler, o en formato JSON a través de HTTPHandler).

Por lo general, esto significa que si necesita hacer algo especial con LogRecord, debe hacer una de las siguientes cosas.

  • Cree su propia subclase Logger, que anula Logger.makeRecord(), y configúrelo usando setLoggerClass() antes de que se creen instancias de los registradores que le interesan.

  • Agrega un Filter a un registrador o gestor, que realiza la manipulación especial necesaria que necesita cuando se llama a su método filter().

El primer enfoque sería un poco difícil de manejar en el escenario en el que (digamos) varias bibliotecas diferentes quisieran hacer cosas diferentes. Cada uno intentaría establecer su propia subclase Logger, y el que hiciera esto último ganaría.

El segundo enfoque funciona razonablemente bien en muchos casos, pero no le permite, por ejemplo, usar una subclase especializada de LogRecord. Los desarrolladores de bibliotecas pueden establecer un filtro adecuado en sus registradores, pero tendrían que recordar hacerlo cada vez que introduzcan un nuevo registrador (lo que harían simplemente agregando nuevos paquetes o módulos y haciendo

logger = logging.getLogger(__name__)

a nivel de módulo). Probablemente sean demasiadas cosas en las que pensar. Los desarrolladores también podrían agregar el filtro a NullHandler adjunto a su registrador de nivel superior, pero esto no se invocaría si un desarrollador de aplicaciones adjuntara un controlador a un registrador de biblioteca de nivel inferior — así que la salida de ese gestor no reflejaría las intenciones del desarrollador de la biblioteca.

En Python 3.2 y posteriores, la creación de LogRecord se realiza a través de una fábrica, que puede especificar. La fábrica es simplemente un invocable que puede configurar con setLogRecordFactory(), e interrogar con getLogRecordFactory(). La fábrica se invoca con la misma firma que el constructor LogRecord, ya que LogRecord es la configuración predeterminada de la fábrica.

Este enfoque permite que una fábrica personalizada controle todos los aspectos de la creación de LogRecord. Por ejemplo, podría devolver una subclase, o simplemente agregar algunos atributos adicionales al registro una vez creado, usando un patrón similar a este:

old_factory = logging.getLogRecordFactory()

def record_factory(*args, **kwargs):
    record = old_factory(*args, **kwargs)
    record.custom_attribute = 0xdecafbad
    return record

logging.setLogRecordFactory(record_factory)

Este patrón permite que diferentes bibliotecas encadenen fábricas juntas, y siempre que no sobrescriban los atributos de las demás o sobrescriban involuntariamente los atributos proporcionados como estándar, no debería haber sorpresas. Sin embargo, debe tenerse en cuenta que cada eslabón de la cadena agrega una sobrecarga de tiempo de ejecución a todas las operaciones de logging, y la técnica solo debe usarse cuando el uso de Filter no proporciona el resultado deseado.

Subclasificación QueueHandler - un ejemplo de ZeroMQ

Puede usar una subclase QueueHandler para enviar mensajes a otros tipos de colas, por ejemplo, un socket de “publicación” ZeroMQ. En el siguiente ejemplo, el socket se crea por separado y se pasa al gestor (como su “cola”):

import zmq   # using pyzmq, the Python binding for ZeroMQ
import json  # for serializing records portably

ctx = zmq.Context()
sock = zmq.Socket(ctx, zmq.PUB)  # or zmq.PUSH, or other suitable value
sock.bind('tcp://*:5556')        # or wherever

class ZeroMQSocketHandler(QueueHandler):
    def enqueue(self, record):
        self.queue.send_json(record.__dict__)


handler = ZeroMQSocketHandler(sock)

Por supuesto, hay otras formas de organizar esto, por ejemplo, pasando los datos que necesita el gestor para crear el socket:

class ZeroMQSocketHandler(QueueHandler):
    def __init__(self, uri, socktype=zmq.PUB, ctx=None):
        self.ctx = ctx or zmq.Context()
        socket = zmq.Socket(self.ctx, socktype)
        socket.bind(uri)
        super().__init__(socket)

    def enqueue(self, record):
        self.queue.send_json(record.__dict__)

    def close(self):
        self.queue.close()

Subclasificación QueueListener - un ejemplo de ZeroMQ

También puede subclasificar QueueListener para obtener mensajes de otros tipos de colas, por ejemplo, un socket de “suscripción” de ZeroMQ. Aquí tienes un ejemplo:

class ZeroMQSocketListener(QueueListener):
    def __init__(self, uri, /, *handlers, **kwargs):
        self.ctx = kwargs.get('ctx') or zmq.Context()
        socket = zmq.Socket(self.ctx, zmq.SUB)
        socket.setsockopt_string(zmq.SUBSCRIBE, '')  # subscribe to everything
        socket.connect(uri)
        super().__init__(socket, *handlers, **kwargs)

    def dequeue(self):
        msg = self.queue.recv_json()
        return logging.makeLogRecord(msg)

Ver también

Módulo logging

Referencia de API para el módulo logging.

Módulo logging.config

API de configuración para el módulo logging.

Módulo logging.handlers

Gestores útiles incluidos con el módulo logging.

Un tutorial básico de logging

Un tutorial de logging más avanzado

Una configuración de ejemplo basada en diccionario

A continuación se muestra un ejemplo de un diccionario de configuración de logging, tomado de la documentación del proyecto Django. Este diccionario se pasa a dictConfig() para poner en efecto la configuración:

LOGGING = {
    'version': 1,
    'disable_existing_loggers': True,
    'formatters': {
        'verbose': {
            'format': '%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d %(message)s'
        },
        'simple': {
            'format': '%(levelname)s %(message)s'
        },
    },
    'filters': {
        'special': {
            '()': 'project.logging.SpecialFilter',
            'foo': 'bar',
        }
    },
    'handlers': {
        'null': {
            'level':'DEBUG',
            'class':'django.utils.log.NullHandler',
        },
        'console':{
            'level':'DEBUG',
            'class':'logging.StreamHandler',
            'formatter': 'simple'
        },
        'mail_admins': {
            'level': 'ERROR',
            'class': 'django.utils.log.AdminEmailHandler',
            'filters': ['special']
        }
    },
    'loggers': {
        'django': {
            'handlers':['null'],
            'propagate': True,
            'level':'INFO',
        },
        'django.request': {
            'handlers': ['mail_admins'],
            'level': 'ERROR',
            'propagate': False,
        },
        'myproject.custom': {
            'handlers': ['console', 'mail_admins'],
            'level': 'INFO',
            'filters': ['special']
        }
    }
}

Para obtener más información sobre esta configuración, puede ver la sección correspondiente de la documentación de Django.

Usar un rotador y un nombre para personalizar el procesamiento de rotación de log

An example of how you can define a namer and rotator is given in the following runnable script, which shows gzip compression of the log file:

import gzip
import logging
import logging.handlers
import os
import shutil

def namer(name):
    return name + ".gz"

def rotator(source, dest):
    with open(source, 'rb') as f_in:
        with gzip.open(dest, 'wb') as f_out:
            shutil.copyfileobj(f_in, f_out)
    os.remove(source)


rh = logging.handlers.RotatingFileHandler('rotated.log', maxBytes=128, backupCount=5)
rh.rotator = rotator
rh.namer = namer

root = logging.getLogger()
root.setLevel(logging.INFO)
root.addHandler(rh)
f = logging.Formatter('%(asctime)s %(message)s')
rh.setFormatter(f)
for i in range(1000):
    root.info(f'Message no. {i + 1}')

After running this, you will see six new files, five of which are compressed:

$ ls rotated.log*
rotated.log       rotated.log.2.gz  rotated.log.4.gz
rotated.log.1.gz  rotated.log.3.gz  rotated.log.5.gz
$ zcat rotated.log.1.gz
2023-01-20 02:28:17,767 Message no. 996
2023-01-20 02:28:17,767 Message no. 997
2023-01-20 02:28:17,767 Message no. 998

Un ejemplo de multiprocesamiento más elaborado

El siguiente ejemplo de trabajo muestra cómo logging se puede usar con multiprocesamiento usando archivos de configuración. Las configuraciones son bastante simples, pero sirven para ilustrar cómo se podrían implementar las más complejas en un escenario real de multiprocesamiento.

En el ejemplo, el proceso principal genera un proceso de escucha y algunos procesos de trabajo. Cada uno de los procesos principales, el oyente y los trabajadores tienen tres configuraciones separadas (todos los trabajadores comparten la misma configuración). Podemos ver el registro en el proceso principal, cómo los trabajadores se registran en un QueueHandler y cómo el oyente implementa un QueueListener y una configuración de registro más compleja, y organiza el envío de eventos recibidos a través de la cola a los controladores especificados en la configuración. Tenga en cuenta que estas configuraciones son puramente ilustrativas, pero debería poder adaptar este ejemplo a su propio escenario.

Aquí está el script, el docstrings y los comentarios, esperemos, expliquen cómo funciona:

import logging
import logging.config
import logging.handlers
from multiprocessing import Process, Queue, Event, current_process
import os
import random
import time

class MyHandler:
    """
    A simple handler for logging events. It runs in the listener process and
    dispatches events to loggers based on the name in the received record,
    which then get dispatched, by the logging system, to the handlers
    configured for those loggers.
    """

    def handle(self, record):
        if record.name == "root":
            logger = logging.getLogger()
        else:
            logger = logging.getLogger(record.name)

        if logger.isEnabledFor(record.levelno):
            # The process name is transformed just to show that it's the listener
            # doing the logging to files and console
            record.processName = '%s (for %s)' % (current_process().name, record.processName)
            logger.handle(record)

def listener_process(q, stop_event, config):
    """
    This could be done in the main process, but is just done in a separate
    process for illustrative purposes.

    This initialises logging according to the specified configuration,
    starts the listener and waits for the main process to signal completion
    via the event. The listener is then stopped, and the process exits.
    """
    logging.config.dictConfig(config)
    listener = logging.handlers.QueueListener(q, MyHandler())
    listener.start()
    if os.name == 'posix':
        # On POSIX, the setup logger will have been configured in the
        # parent process, but should have been disabled following the
        # dictConfig call.
        # On Windows, since fork isn't used, the setup logger won't
        # exist in the child, so it would be created and the message
        # would appear - hence the "if posix" clause.
        logger = logging.getLogger('setup')
        logger.critical('Should not appear, because of disabled logger ...')
    stop_event.wait()
    listener.stop()

def worker_process(config):
    """
    A number of these are spawned for the purpose of illustration. In
    practice, they could be a heterogeneous bunch of processes rather than
    ones which are identical to each other.

    This initialises logging according to the specified configuration,
    and logs a hundred messages with random levels to randomly selected
    loggers.

    A small sleep is added to allow other processes a chance to run. This
    is not strictly needed, but it mixes the output from the different
    processes a bit more than if it's left out.
    """
    logging.config.dictConfig(config)
    levels = [logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR,
              logging.CRITICAL]
    loggers = ['foo', 'foo.bar', 'foo.bar.baz',
               'spam', 'spam.ham', 'spam.ham.eggs']
    if os.name == 'posix':
        # On POSIX, the setup logger will have been configured in the
        # parent process, but should have been disabled following the
        # dictConfig call.
        # On Windows, since fork isn't used, the setup logger won't
        # exist in the child, so it would be created and the message
        # would appear - hence the "if posix" clause.
        logger = logging.getLogger('setup')
        logger.critical('Should not appear, because of disabled logger ...')
    for i in range(100):
        lvl = random.choice(levels)
        logger = logging.getLogger(random.choice(loggers))
        logger.log(lvl, 'Message no. %d', i)
        time.sleep(0.01)

def main():
    q = Queue()
    # The main process gets a simple configuration which prints to the console.
    config_initial = {
        'version': 1,
        'handlers': {
            'console': {
                'class': 'logging.StreamHandler',
                'level': 'INFO'
            }
        },
        'root': {
            'handlers': ['console'],
            'level': 'DEBUG'
        }
    }
    # The worker process configuration is just a QueueHandler attached to the
    # root logger, which allows all messages to be sent to the queue.
    # We disable existing loggers to disable the "setup" logger used in the
    # parent process. This is needed on POSIX because the logger will
    # be there in the child following a fork().
    config_worker = {
        'version': 1,
        'disable_existing_loggers': True,
        'handlers': {
            'queue': {
                'class': 'logging.handlers.QueueHandler',
                'queue': q
            }
        },
        'root': {
            'handlers': ['queue'],
            'level': 'DEBUG'
        }
    }
    # The listener process configuration shows that the full flexibility of
    # logging configuration is available to dispatch events to handlers however
    # you want.
    # We disable existing loggers to disable the "setup" logger used in the
    # parent process. This is needed on POSIX because the logger will
    # be there in the child following a fork().
    config_listener = {
        'version': 1,
        'disable_existing_loggers': True,
        'formatters': {
            'detailed': {
                'class': 'logging.Formatter',
                'format': '%(asctime)s %(name)-15s %(levelname)-8s %(processName)-10s %(message)s'
            },
            'simple': {
                'class': 'logging.Formatter',
                'format': '%(name)-15s %(levelname)-8s %(processName)-10s %(message)s'
            }
        },
        'handlers': {
            'console': {
                'class': 'logging.StreamHandler',
                'formatter': 'simple',
                'level': 'INFO'
            },
            'file': {
                'class': 'logging.FileHandler',
                'filename': 'mplog.log',
                'mode': 'w',
                'formatter': 'detailed'
            },
            'foofile': {
                'class': 'logging.FileHandler',
                'filename': 'mplog-foo.log',
                'mode': 'w',
                'formatter': 'detailed'
            },
            'errors': {
                'class': 'logging.FileHandler',
                'filename': 'mplog-errors.log',
                'mode': 'w',
                'formatter': 'detailed',
                'level': 'ERROR'
            }
        },
        'loggers': {
            'foo': {
                'handlers': ['foofile']
            }
        },
        'root': {
            'handlers': ['console', 'file', 'errors'],
            'level': 'DEBUG'
        }
    }
    # Log some initial events, just to show that logging in the parent works
    # normally.
    logging.config.dictConfig(config_initial)
    logger = logging.getLogger('setup')
    logger.info('About to create workers ...')
    workers = []
    for i in range(5):
        wp = Process(target=worker_process, name='worker %d' % (i + 1),
                     args=(config_worker,))
        workers.append(wp)
        wp.start()
        logger.info('Started worker: %s', wp.name)
    logger.info('About to create listener ...')
    stop_event = Event()
    lp = Process(target=listener_process, name='listener',
                 args=(q, stop_event, config_listener))
    lp.start()
    logger.info('Started listener')
    # We now hang around for the workers to finish their work.
    for wp in workers:
        wp.join()
    # Workers all done, listening can now stop.
    # Logging in the parent still works normally.
    logger.info('Telling listener to stop ...')
    stop_event.set()
    lp.join()
    logger.info('All done.')

if __name__ == '__main__':
    main()

Insertar BOM en mensajes enviados a SysLogHandler

RFC 5424 requiere que se envíe un mensaje Unicode a un demonio syslog como un conjunto de bytes que tienen la siguiente estructura: un componente opcional ASCII puro, seguido de una marca de orden de bytes UTF-8 (BOM), seguida de Codificado en Unicode usando UTF-8. (Ver sección relevante de la especificación RFC 5424#section-6.)

En Python 3.1, se agregó código a SysLogHandler para insertar BOM en el mensaje, pero desafortunadamente, se implementó incorrectamente, BOM aparece al principio del mensaje y, por lo tanto, no permite ningún componente ASCII puro para que aparezca antes.

Como este comportamiento no funciona, el código de inserción BOM incorrecto se elimina de Python 3.2.4 y versiones posteriores. Sin embargo, no se está reemplazando, y si desea producir mensajes compatibles con RFC 5424 que incluyan BOM, una secuencia opcional de ASCII puro antes y Unicode arbitrario después, codificados usando UTF-8; entonces necesita hacer lo siguiente:

  1. Adjunte una instancia de Formatter a su instancia SysLogHandler, con una cadena de caracteres de formato como:

    'ASCII section\ufeffUnicode section'
    

    El punto de código Unicode U+ FEFF, cuando se codifica usando UTF-8, se codificará como una BOM UTF-8, la cadena de bytes b'\xef\xbb\xbf'.

  2. Reemplace la sección ASCII con los marcadores de posición que desee, pero asegúrese de que los datos que aparecen allí después de la sustitución sean siempre ASCII (de esa manera, permanecerán sin cambios después de la codificación UTF-8).

  3. Reemplace la sección Unicode con los marcadores de posición que desee; si los datos que aparecen allí después de la sustitución contienen caracteres fuera del rango ASCII, está bien: se codificarán usando UTF-8.

El mensaje formateado se codificará utilizando la codificación UTF-8 por SysLogHandler. Si sigue las reglas anteriores, debería poder producir mensajes compatibles con RFC 5424. Si no lo hace, es posible que el logging no se queje, pero sus mensajes no serán compatibles con RFC 5424 y su demonio syslog puede quejarse.

Implementar logging estructurado

Aunque la mayoría de los mensajes de registro están destinados a ser leídos por humanos y, por lo tanto, no se pueden analizar fácilmente mediante una máquina, puede haber circunstancias en las que desee generar mensajes en un formato estructurado que sea capaz de ser analizado por un programa (sin necesidad de expresiones regulares complejas para analizar el mensaje de registro). Esto es sencillo de lograr utilizando el paquete de registro. Hay varias formas de lograr esto, pero el siguiente es un enfoque simple que usa JSON para serializar el evento de una manera analizable por máquina:

import json
import logging

class StructuredMessage:
    def __init__(self, message, /, **kwargs):
        self.message = message
        self.kwargs = kwargs

    def __str__(self):
        return '%s >>> %s' % (self.message, json.dumps(self.kwargs))

_ = StructuredMessage   # optional, to improve readability

logging.basicConfig(level=logging.INFO, format='%(message)s')
logging.info(_('message 1', foo='bar', bar='baz', num=123, fnum=123.456))

Si se ejecuta el script anterior, se imprime:

message 1 >>> {"fnum": 123.456, "num": 123, "bar": "baz", "foo": "bar"}

Tenga en cuenta que el orden de los elementos puede ser diferente según la versión de Python utilizada.

Si necesita un procesamiento más especializado, puede utilizar un codificador JSON personalizado, como en el siguiente ejemplo completo:

import json
import logging


class Encoder(json.JSONEncoder):
    def default(self, o):
        if isinstance(o, set):
            return tuple(o)
        elif isinstance(o, str):
            return o.encode('unicode_escape').decode('ascii')
        return super().default(o)

class StructuredMessage:
    def __init__(self, message, /, **kwargs):
        self.message = message
        self.kwargs = kwargs

    def __str__(self):
        s = Encoder().encode(self.kwargs)
        return '%s >>> %s' % (self.message, s)

_ = StructuredMessage   # optional, to improve readability

def main():
    logging.basicConfig(level=logging.INFO, format='%(message)s')
    logging.info(_('message 1', set_value={1, 2, 3}, snowman='\u2603'))

if __name__ == '__main__':
    main()

Cuando se ejecuta el script anterior, se imprime:

message 1 >>> {"snowman": "\u2603", "set_value": [1, 2, 3]}

Tenga en cuenta que el orden de los elementos puede ser diferente según la versión de Python utilizada.

Personalización de gestores con dictConfig()

Hay ocasiones en las que desea personalizar los gestores de logging de formas particulares, y si usa dictConfig() puede hacerlo sin subclases. Como ejemplo, considere que es posible que desee establecer la propiedad de un archivo de log. En POSIX, esto se hace fácilmente usando shutil.chown(), pero los gestores de archivos en stdlib no ofrecen soporte integrado. Puede personalizar la creación de gestores usando una función simple como:

def owned_file_handler(filename, mode='a', encoding=None, owner=None):
    if owner:
        if not os.path.exists(filename):
            open(filename, 'a').close()
        shutil.chown(filename, *owner)
    return logging.FileHandler(filename, mode, encoding)

Luego puede especificar, en una configuración de logging pasada a dictConfig(), que se cree un gestor de logging llamando a esta función:

LOGGING = {
    'version': 1,
    'disable_existing_loggers': False,
    'formatters': {
        'default': {
            'format': '%(asctime)s %(levelname)s %(name)s %(message)s'
        },
    },
    'handlers': {
        'file':{
            # The values below are popped from this dictionary and
            # used to create the handler, set the handler's level and
            # its formatter.
            '()': owned_file_handler,
            'level':'DEBUG',
            'formatter': 'default',
            # The values below are passed to the handler creator callable
            # as keyword arguments.
            'owner': ['pulse', 'pulse'],
            'filename': 'chowntest.log',
            'mode': 'w',
            'encoding': 'utf-8',
        },
    },
    'root': {
        'handlers': ['file'],
        'level': 'DEBUG',
    },
}

En este ejemplo, se establece la propiedad utilizando el usuario y el grupo pulse, solo con fines ilustrativos. Poniéndolo junto en un script de trabajo, chowntest.py:

import logging, logging.config, os, shutil

def owned_file_handler(filename, mode='a', encoding=None, owner=None):
    if owner:
        if not os.path.exists(filename):
            open(filename, 'a').close()
        shutil.chown(filename, *owner)
    return logging.FileHandler(filename, mode, encoding)

LOGGING = {
    'version': 1,
    'disable_existing_loggers': False,
    'formatters': {
        'default': {
            'format': '%(asctime)s %(levelname)s %(name)s %(message)s'
        },
    },
    'handlers': {
        'file':{
            # The values below are popped from this dictionary and
            # used to create the handler, set the handler's level and
            # its formatter.
            '()': owned_file_handler,
            'level':'DEBUG',
            'formatter': 'default',
            # The values below are passed to the handler creator callable
            # as keyword arguments.
            'owner': ['pulse', 'pulse'],
            'filename': 'chowntest.log',
            'mode': 'w',
            'encoding': 'utf-8',
        },
    },
    'root': {
        'handlers': ['file'],
        'level': 'DEBUG',
    },
}

logging.config.dictConfig(LOGGING)
logger = logging.getLogger('mylogger')
logger.debug('A debug message')

Para ejecutar esto, probablemente se necesite ejecutarlo como root:

$ sudo python3.3 chowntest.py
$ cat chowntest.log
2013-11-05 09:34:51,128 DEBUG mylogger A debug message
$ ls -l chowntest.log
-rw-r--r-- 1 pulse pulse 55 2013-11-05 09:34 chowntest.log

Tenga en cuenta que este ejemplo usa Python 3.3 porque ahí es donde shutil.chown() aparece. Este enfoque debería funcionar con cualquier versión de Python que admita dictConfig(), es decir, Python 2.7, 3.2 o posterior. Con las versiones anteriores a 3.3, necesitaría implementar el cambio de propiedad real usando, por ejemplo, os.chown().

En la práctica, la función de creación de gestores puede estar en un módulo de utilidad en algún lugar de su proyecto. En lugar de la línea en la configuración:

'()': owned_file_handler,

podrías usar, por ejemplo,:

'()': 'ext://project.util.owned_file_handler',

donde project.util se puede reemplazar con el nombre real del paquete donde reside la función. En el script de trabajo anterior, el uso de 'ext://__main__.owned_file_handler' debería funcionar. Aquí, el invocable real se resuelve mediante dictConfig() de la especificación ext://.

Por fortuna, este ejemplo también indica el camino hacia cómo podría implementar otros tipos de cambio de archivo, por ejemplo, configurando de la misma manera bits de permisos POSIX específicos, usando os.chmod().

Por supuesto, el enfoque también podría extenderse a tipos de gestores distintos a FileHandler - por ejemplo, uno de los gestores de archivos rotativos, o un tipo diferente por completo.

Usar estilos de formato particulares en toda su aplicación

En Python 3.2, Formatter obtuvo un parámetro de palabra clave estilo que, aunque por defecto era % para compatibilidad con versiones anteriores, permitía la especificación de { o $ para permitir los enfoques de formato admitidos por str.format() y string.Template. Tenga en cuenta que esto rige el formato de los mensajes de logging para la salida final a los logging y es completamente ortogonal a cómo se construye un mensaje de logging individual.

Logging calls (debug(), info() etc.) only take positional parameters for the actual logging message itself, with keyword parameters used only for determining options for how to handle the logging call (e.g. the exc_info keyword parameter to indicate that traceback information should be logged, or the extra keyword parameter to indicate additional contextual information to be added to the log). So you cannot directly make logging calls using str.format() or string.Template syntax, because internally the logging package uses %-formatting to merge the format string and the variable arguments. There would be no changing this while preserving backward compatibility, since all logging calls which are out there in existing code will be using %-format strings.

Ha habido sugerencias para asociar estilos de formato con loggers específicos, pero ese enfoque también tiene problemas de compatibilidad con versiones anteriores porque cualquier código existente podría estar usando un nombre de logger dado y usando formato %.

Para que logging funcione de manera interoperable entre cualquier biblioteca de terceros y su código, las decisiones sobre el formato deben tomarse a nivel de la llamada de logging individual. Esto abre un par de formas en las que se pueden acomodar estilos de formato alternativos.

Uso de fábricas de LogRecord

En Python 3.2, junto con los cambios de Formatter mencionados anteriormente, el paquete logging ganó la capacidad de permitir a los usuarios establecer sus propias subclases LogRecord, usando la función setLogRecordFactory(). Puede usar esto para configurar su propia subclase de LogRecord, que hace lo correcto al anular el método getMessage(). La implementación de la clase base de este método es donde ocurre el formato msg % args y donde puede sustituir su formato alternativo; sin embargo, debe tener cuidado de admitir todos los estilos de formato y permitir formato % como predeterminado, para garantizar la interoperabilidad con otro código. También se debe tener cuidado de llamar a str(self.msg), tal como lo hace la implementación base.

Consulte la documentación de referencia en setLogRecordFactory() y LogRecord para obtener más información.

Usar objetos de mensaje personalizados

Existe otra forma, quizás más sencilla, de usar el formato {} - y $ - para construir sus mensajes de log individuales. Al iniciar sesión, recuerde que puede usar cualquier objeto como una cadena de caracteres de formato de mensaje (Usando objetos arbitrarios como mensajes) que al iniciar sesión puede usar un objeto arbitrario como una cadena de formato de mensaje, y que el paquete de logging llamará str() en ese objeto para obtener el cadena de formato real. Considere las siguientes dos clases:

class BraceMessage:
    def __init__(self, fmt, /, *args, **kwargs):
        self.fmt = fmt
        self.args = args
        self.kwargs = kwargs

    def __str__(self):
        return self.fmt.format(*self.args, **self.kwargs)

class DollarMessage:
    def __init__(self, fmt, /, **kwargs):
        self.fmt = fmt
        self.kwargs = kwargs

    def __str__(self):
        from string import Template
        return Template(self.fmt).substitute(**self.kwargs)

Cualquiera de estos puede usarse en lugar de una cadena de formato, para permitir que se use el formato {} - o $ - para construir la parte del «mensaje» real que aparece en la salida del log formateado en lugar de “%(message)s” or “{message}” or “$message”. Si le resulta un poco difícil de manejar usar los nombres de las clases cada vez que desea registrar algo, puede hacerlo más tolerable si usa un alias como M o _ para el mensaje (o quizás __, si está utilizando _ para localización).

A continuación se dan ejemplos de este enfoque. En primer lugar, formatear con str.format():

>>> __ = BraceMessage
>>> print(__('Message with {0} {1}', 2, 'placeholders'))
Message with 2 placeholders
>>> class Point: pass
...
>>> p = Point()
>>> p.x = 0.5
>>> p.y = 0.5
>>> print(__('Message with coordinates: ({point.x:.2f}, {point.y:.2f})', point=p))
Message with coordinates: (0.50, 0.50)

En segundo lugar, formatear con string.Template:

>>> __ = DollarMessage
>>> print(__('Message with $num $what', num=2, what='placeholders'))
Message with 2 placeholders
>>>

One thing to note is that you pay no significant performance penalty with this approach: the actual formatting happens not when you make the logging call, but when (and if) the logged message is actually about to be output to a log by a handler. So the only slightly unusual thing which might trip you up is that the parentheses go around the format string and the arguments, not just the format string. That’s because the __ notation is just syntax sugar for a constructor call to one of the XXXMessage classes shown above.

Configurar filtros con dictConfig()

Puedes configurar filtros usando dictConfig(), aunque a primera vista es posible que no sea obvio cómo hacerlo (de ahí esta receta). Dado que Filter es la única clase de filtro incluida en la biblioteca estándar, y es poco probable que satisfaga muchos requisitos (solo está allí como clase base), normalmente necesitarás definir tu propia subclase Filter con un método filter() sobreescrito. Para hacer esto, especifique la clave () en el diccionario de configuración para el filtro, especificando un invocable que se usará para crear el filtro (una clase es la más obvia, pero puede proporcionar cualquier invocable que retorne una instancia Filter). Aquí hay un ejemplo completo:

import logging
import logging.config
import sys

class MyFilter(logging.Filter):
    def __init__(self, param=None):
        self.param = param

    def filter(self, record):
        if self.param is None:
            allow = True
        else:
            allow = self.param not in record.msg
        if allow:
            record.msg = 'changed: ' + record.msg
        return allow

LOGGING = {
    'version': 1,
    'filters': {
        'myfilter': {
            '()': MyFilter,
            'param': 'noshow',
        }
    },
    'handlers': {
        'console': {
            'class': 'logging.StreamHandler',
            'filters': ['myfilter']
        }
    },
    'root': {
        'level': 'DEBUG',
        'handlers': ['console']
    },
}

if __name__ == '__main__':
    logging.config.dictConfig(LOGGING)
    logging.debug('hello')
    logging.debug('hello - noshow')

Este ejemplo muestra cómo puede pasar datos de configuración al invocable que construye la instancia, en forma de parámetros de palabras clave. Cuando se ejecuta, se imprimirá el script anterior:

changed: hello

que muestra que el filtro está funcionando según lo configurado.

Un par de puntos adicionales a tener en cuenta:

  • Si no puede hacer referencia al invocable directamente en la configuración (por ejemplo, si vive en un módulo diferente y no puede importarlo directamente donde está el diccionario de configuración), puede usar el formulario ext://... como se describe en Acceso a objetos externos. Por ejemplo, podría haber usado el texto 'ext://__main__.MyFilter' en lugar de MyFilter en el ejemplo anterior.

  • Además de los filtros, esta técnica también se puede utilizar para configurar gestores y formateadores personalizados. Consultar Objetos definidos por el usuario para obtener más información sobre cómo logging admite el uso de objetos definidos por el usuario en su configuración, y ver arriba la otra receta Personalización de gestores con dictConfig().

Formato de excepción personalizado

Puede haber ocasiones en las que desee personalizar un formato de excepción; por el bien del argumento, digamos que desea exactamente una línea por evento registrado, incluso cuando la información de la excepción está presente. Puede hacer esto con una clase de formateador personalizada, como se muestra en el siguiente ejemplo:

import logging

class OneLineExceptionFormatter(logging.Formatter):
    def formatException(self, exc_info):
        """
        Format an exception so that it prints on a single line.
        """
        result = super().formatException(exc_info)
        return repr(result)  # or format into one line however you want to

    def format(self, record):
        s = super().format(record)
        if record.exc_text:
            s = s.replace('\n', '') + '|'
        return s

def configure_logging():
    fh = logging.FileHandler('output.txt', 'w')
    f = OneLineExceptionFormatter('%(asctime)s|%(levelname)s|%(message)s|',
                                  '%d/%m/%Y %H:%M:%S')
    fh.setFormatter(f)
    root = logging.getLogger()
    root.setLevel(logging.DEBUG)
    root.addHandler(fh)

def main():
    configure_logging()
    logging.info('Sample message')
    try:
        x = 1 / 0
    except ZeroDivisionError as e:
        logging.exception('ZeroDivisionError: %s', e)

if __name__ == '__main__':
    main()

Cuando se ejecuta, esto produce un archivo con exactamente dos líneas:

28/01/2015 07:21:23|INFO|Sample message|
28/01/2015 07:21:23|ERROR|ZeroDivisionError: integer division or modulo by zero|'Traceback (most recent call last):\n  File "logtest7.py", line 30, in main\n    x = 1 / 0\nZeroDivisionError: integer division or modulo by zero'|

Si bien el tratamiento anterior es simplista, señala el camino hacia cómo se puede formatear la información de excepción a su gusto. El módulo traceback puede resultar útil para necesidades más especializadas.

Mensajes de logging hablantes

Puede haber situaciones en las que sea deseable que los mensajes de logging se presenten en un formato audible en lugar de visible. Esto es fácil de hacer si tiene la funcionalidad de texto a voz (TTS por sus siglas en inglés) disponible en su sistema, incluso si no tiene un binding Python. La mayoría de los sistemas TTS tienen un programa de línea de comandos que puede ejecutar, y esto puede invocarse desde un gestor usando subprocess. Aquí se asume que los programas de línea de comando TTS no esperarán interactuar con los usuarios o tardarán mucho en completarse, y que la frecuencia de los mensajes registrados no será tan alta como para inundar al usuario con mensajes, y que es aceptable que los mensajes se reproducen uno a la vez en lugar de todos al mismo tiempo. La implementación de ejemplo a continuación espera a que se pronuncie un mensaje antes de que se procese el siguiente, y esto puede hacer que otros gestores se mantengan esperando. Aquí hay un breve ejemplo que muestra el enfoque, que asume que el paquete TTS espeak está disponible:

import logging
import subprocess
import sys

class TTSHandler(logging.Handler):
    def emit(self, record):
        msg = self.format(record)
        # Speak slowly in a female English voice
        cmd = ['espeak', '-s150', '-ven+f3', msg]
        p = subprocess.Popen(cmd, stdout=subprocess.PIPE,
                             stderr=subprocess.STDOUT)
        # wait for the program to finish
        p.communicate()

def configure_logging():
    h = TTSHandler()
    root = logging.getLogger()
    root.addHandler(h)
    # the default formatter just returns the message
    root.setLevel(logging.DEBUG)

def main():
    logging.info('Hello')
    logging.debug('Goodbye')

if __name__ == '__main__':
    configure_logging()
    sys.exit(main())

Cuando se ejecute, este script debería decir «Hola» y luego «Adiós» con voz femenina.

El enfoque anterior puede, por supuesto, adaptarse a otros sistemas TTS e incluso a otros sistemas que pueden procesar mensajes a través de programas externos ejecutados desde una línea de comando.

Almacenamiento en búfer de mensajes de logging y su salida condicional

Puede haber situaciones en las que desee registrar mensajes en un área temporal y solo mostrarlos si se produce una determinada condición. Por ejemplo, es posible que desee comenzar a registrar eventos de depuración en una función, y si la función se completa sin errores, no desea saturar el log con la información de depuración recopilada; pero si hay un error, desea toda la información de depuración información así como el error.

Aquí hay un ejemplo que muestra cómo puede hacer esto usando un decorador para sus funciones donde desea que el logging se comporte de esta manera. Hace uso de logging.handlers.MemoryHandler, que permite el almacenamiento en búfer de eventos registrados hasta que se produzca alguna condición, momento en el que los eventos almacenados en búfer se flushed y se pasan a otro gestor (el gestor target) para su procesamiento. De forma predeterminada, el MemoryHandler se vacía cuando su búfer se llena o se ve un evento cuyo nivel es mayor o igual a un umbral especificado. Puede usar esta receta con una subclase más especializada de MemoryHandler si desea un comportamiento de descarga personalizado.

El script de ejemplo tiene una función simple, foo, que recorre todos los niveles de logging, escribiendo en sys.stderr para decir en qué nivel está a punto de loguear y luego registrar un mensaje en ese nivel. Puede pasar un parámetro a foo que, si es verdadero, se registrará en los niveles ERROR y CRITICAL; de lo contrario, solo registrará en los niveles DEBUG, INFO y WARNING.

El script simplemente dispone decorar foo con un decorador que hará el logging condicional que se requiere. El decorador toma un registrador como parámetro y adjunta un gestor de memoria durante la duración de la llamada a la función decorada. El decorador se puede parametrizar adicionalmente utilizando un gestor target, un nivel en el que debe producirse el vaciado y una capacidad para el búfer (número de registros almacenados en búfer). Estos están predeterminados a StreamHandler que escribe en sys.stderr, logging.ERROR y 100 respectivamente.

Aquí está el script:

import logging
from logging.handlers import MemoryHandler
import sys

logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())

def log_if_errors(logger, target_handler=None, flush_level=None, capacity=None):
    if target_handler is None:
        target_handler = logging.StreamHandler()
    if flush_level is None:
        flush_level = logging.ERROR
    if capacity is None:
        capacity = 100
    handler = MemoryHandler(capacity, flushLevel=flush_level, target=target_handler)

    def decorator(fn):
        def wrapper(*args, **kwargs):
            logger.addHandler(handler)
            try:
                return fn(*args, **kwargs)
            except Exception:
                logger.exception('call failed')
                raise
            finally:
                super(MemoryHandler, handler).flush()
                logger.removeHandler(handler)
        return wrapper

    return decorator

def write_line(s):
    sys.stderr.write('%s\n' % s)

def foo(fail=False):
    write_line('about to log at DEBUG ...')
    logger.debug('Actually logged at DEBUG')
    write_line('about to log at INFO ...')
    logger.info('Actually logged at INFO')
    write_line('about to log at WARNING ...')
    logger.warning('Actually logged at WARNING')
    if fail:
        write_line('about to log at ERROR ...')
        logger.error('Actually logged at ERROR')
        write_line('about to log at CRITICAL ...')
        logger.critical('Actually logged at CRITICAL')
    return fail

decorated_foo = log_if_errors(logger)(foo)

if __name__ == '__main__':
    logger.setLevel(logging.DEBUG)
    write_line('Calling undecorated foo with False')
    assert not foo(False)
    write_line('Calling undecorated foo with True')
    assert foo(True)
    write_line('Calling decorated foo with False')
    assert not decorated_foo(False)
    write_line('Calling decorated foo with True')
    assert decorated_foo(True)

Cuando se ejecuta este script, se debe observar el siguiente resultado:

Calling undecorated foo with False
about to log at DEBUG ...
about to log at INFO ...
about to log at WARNING ...
Calling undecorated foo with True
about to log at DEBUG ...
about to log at INFO ...
about to log at WARNING ...
about to log at ERROR ...
about to log at CRITICAL ...
Calling decorated foo with False
about to log at DEBUG ...
about to log at INFO ...
about to log at WARNING ...
Calling decorated foo with True
about to log at DEBUG ...
about to log at INFO ...
about to log at WARNING ...
about to log at ERROR ...
Actually logged at DEBUG
Actually logged at INFO
Actually logged at WARNING
Actually logged at ERROR
about to log at CRITICAL ...
Actually logged at CRITICAL

Como puede ver, la salida real de logging solo ocurre cuando se registra un evento cuya gravedad es ERROR o mayor, pero en ese caso, también se registra cualquier evento anterior con una gravedad menor.

Por supuesto, puede utilizar las formas de decoración convencionales:

@log_if_errors(logger)
def foo(fail=False):
    ...

Enviando mensajes de logging al correo electrónico, con almacenamiento en búfer

Para ilustrar cómo puede enviar mensajes de logging por correo electrónico, de modo que se envíe un número determinado de mensajes, puede usar la subclase BufferingHandler. En el siguiente ejemplo, que puedes adaptar a tus necesidades específicas, se proporciona un sencillo arnés de pruebas que permite ejecutar el script con argumentos de línea de comandos especificando lo que normalmente necesitas para enviar cosas por SMTP. (Ejecute el script descargado con el argumento -h para ver los argumentos necesarios y opcionales).

import logging
import logging.handlers
import smtplib

class BufferingSMTPHandler(logging.handlers.BufferingHandler):
    def __init__(self, mailhost, port, username, password, fromaddr, toaddrs,
                 subject, capacity):
        logging.handlers.BufferingHandler.__init__(self, capacity)
        self.mailhost = mailhost
        self.mailport = port
        self.username = username
        self.password = password
        self.fromaddr = fromaddr
        if isinstance(toaddrs, str):
            toaddrs = [toaddrs]
        self.toaddrs = toaddrs
        self.subject = subject
        self.setFormatter(logging.Formatter("%(asctime)s %(levelname)-5s %(message)s"))

    def flush(self):
        if len(self.buffer) > 0:
            try:
                smtp = smtplib.SMTP(self.mailhost, self.mailport)
                smtp.starttls()
                smtp.login(self.username, self.password)
                msg = "From: %s\r\nTo: %s\r\nSubject: %s\r\n\r\n" % (self.fromaddr, ','.join(self.toaddrs), self.subject)
                for record in self.buffer:
                    s = self.format(record)
                    msg = msg + s + "\r\n"
                smtp.sendmail(self.fromaddr, self.toaddrs, msg)
                smtp.quit()
            except Exception:
                if logging.raiseExceptions:
                    raise
            self.buffer = []

if __name__ == '__main__':
    import argparse

    ap = argparse.ArgumentParser()
    aa = ap.add_argument
    aa('host', metavar='HOST', help='SMTP server')
    aa('--port', '-p', type=int, default=587, help='SMTP port')
    aa('user', metavar='USER', help='SMTP username')
    aa('password', metavar='PASSWORD', help='SMTP password')
    aa('to', metavar='TO', help='Addressee for emails')
    aa('sender', metavar='SENDER', help='Sender email address')
    aa('--subject', '-s',
       default='Test Logging email from Python logging module (buffering)',
       help='Subject of email')
    options = ap.parse_args()
    logger = logging.getLogger()
    logger.setLevel(logging.DEBUG)
    h = BufferingSMTPHandler(options.host, options.port, options.user,
                             options.password, options.sender,
                             options.to, options.subject, 10)
    logger.addHandler(h)
    for i in range(102):
        logger.info("Info index = %d", i)
    h.flush()
    h.close()

Si ejecuta este script y su servidor SMTP está correctamente configurado, debería ver que envía once correos electrónicos al destinatario que usted especifique. Los primeros diez correos electrónicos tendrán cada uno diez mensajes de log, y el undécimo tendrá dos mensajes. Eso hace 102 mensajes como se especifica en el script.

Formateo de horas usando UTC (GMT) a través de la configuración

A veces desea formatear las horas usando UTC, lo que se puede hacer usando una clase como UTCFormatter, como se muestra a continuación:

import logging
import time

class UTCFormatter(logging.Formatter):
    converter = time.gmtime

y luego puede usar el UTCFormatter en su código en lugar de Formatter. Si desea hacer eso a través de la configuración, puede usar la API dictConfig() con un enfoque ilustrado por el siguiente ejemplo completo:

import logging
import logging.config
import time

class UTCFormatter(logging.Formatter):
    converter = time.gmtime

LOGGING = {
    'version': 1,
    'disable_existing_loggers': False,
    'formatters': {
        'utc': {
            '()': UTCFormatter,
            'format': '%(asctime)s %(message)s',
        },
        'local': {
            'format': '%(asctime)s %(message)s',
        }
    },
    'handlers': {
        'console1': {
            'class': 'logging.StreamHandler',
            'formatter': 'utc',
        },
        'console2': {
            'class': 'logging.StreamHandler',
            'formatter': 'local',
        },
    },
    'root': {
        'handlers': ['console1', 'console2'],
   }
}

if __name__ == '__main__':
    logging.config.dictConfig(LOGGING)
    logging.warning('The local time is %s', time.asctime())

Cuando se ejecuta este script, debería imprimir algo como:

2015-10-17 12:53:29,501 The local time is Sat Oct 17 13:53:29 2015
2015-10-17 13:53:29,501 The local time is Sat Oct 17 13:53:29 2015

mostrando cómo se formatea la hora como hora local y UTC, una para cada gestor.

Usar un administrador de contexto para logging selectivo

Hay ocasiones en las que sería útil cambiar temporalmente la configuración de logging y revertir esto después de hacer algo. Para ello, un administrador de contexto es la forma más obvia de guardar y restaurar el contexto de logging. Aquí hay un ejemplo simple de un administrador de contexto de este tipo, que le permite cambiar opcionalmente el nivel de logging y agregar un gestor de logging exclusivamente en el alcance del administrador de contexto:

import logging
import sys

class LoggingContext:
    def __init__(self, logger, level=None, handler=None, close=True):
        self.logger = logger
        self.level = level
        self.handler = handler
        self.close = close

    def __enter__(self):
        if self.level is not None:
            self.old_level = self.logger.level
            self.logger.setLevel(self.level)
        if self.handler:
            self.logger.addHandler(self.handler)

    def __exit__(self, et, ev, tb):
        if self.level is not None:
            self.logger.setLevel(self.old_level)
        if self.handler:
            self.logger.removeHandler(self.handler)
        if self.handler and self.close:
            self.handler.close()
        # implicit return of None => don't swallow exceptions

Si especifica un valor de nivel, el nivel del registrador se establece en ese valor en el alcance del bloque with cubierto por el administrador de contexto. Si especifica un gestor, se agrega al registrador al entrar al bloque y se elimina al salir del bloque. También puede pedirle al administrador que cierre el gestor por usted al salir del bloque si ya no lo necesita.

Para ilustrar cómo funciona, podemos agregar el siguiente bloque de código al anterior:

if __name__ == '__main__':
    logger = logging.getLogger('foo')
    logger.addHandler(logging.StreamHandler())
    logger.setLevel(logging.INFO)
    logger.info('1. This should appear just once on stderr.')
    logger.debug('2. This should not appear.')
    with LoggingContext(logger, level=logging.DEBUG):
        logger.debug('3. This should appear once on stderr.')
    logger.debug('4. This should not appear.')
    h = logging.StreamHandler(sys.stdout)
    with LoggingContext(logger, level=logging.DEBUG, handler=h, close=True):
        logger.debug('5. This should appear twice - once on stderr and once on stdout.')
    logger.info('6. This should appear just once on stderr.')
    logger.debug('7. This should not appear.')

Inicialmente configuramos el nivel del registrador en INFO, por lo que aparece el mensaje #1 y el mensaje #2 no. Luego cambiamos el nivel a DEBUG temporalmente en el siguiente bloque with, y aparece el mensaje #3. Una vez que se sale del bloque, el nivel del registrador se restaura a INFO y, por lo tanto, el mensaje #4 no aparece. En el siguiente bloque with, configuramos el nivel en DEBUG nuevamente, pero también agregamos un gestor que escribe en sys.stdout. Por lo tanto, el mensaje #5 aparece dos veces en la consola (una vez a través de stderr y una vez a través de stdout). Después de la finalización de la declaración with, se vuelve al estado anterior, por lo que aparece el mensaje #6 (como el mensaje #1) mientras que el mensaje #7 no (como el mensaje #2).

Si ejecutamos el script resultante, el resultado es el siguiente:

$ python logctx.py
1. This should appear just once on stderr.
3. This should appear once on stderr.
5. This should appear twice - once on stderr and once on stdout.
5. This should appear twice - once on stderr and once on stdout.
6. This should appear just once on stderr.

Si lo ejecutamos de nuevo, pero dirigimos stderr a /dev/null, vemos lo siguiente, que es el único mensaje escrito en stdout:

$ python logctx.py 2>/dev/null
5. This should appear twice - once on stderr and once on stdout.

Una vez más, pero canalizando stdout a /dev/null, obtenemos:

$ python logctx.py >/dev/null
1. This should appear just once on stderr.
3. This should appear once on stderr.
5. This should appear twice - once on stderr and once on stdout.
6. This should appear just once on stderr.

En este caso, el mensaje #5 impreso en stdout no aparece, como se esperaba.

Por supuesto, el enfoque descrito aquí puede generalizarse, por ejemplo, para adjuntar filtros de logging temporalmente. Tenga en cuenta que el código anterior funciona tanto en Python 2 como en Python 3.

Una plantilla de inicio de aplicación CLI

Aquí hay un ejemplo que muestra cómo puede:

  • Utilizar un nivel de logging basado en argumentos de la línea de comandos

  • Enviar a varios subcomandos en archivos separados, todos registrando en el mismo nivel de forma coherente

  • Utilizar una configuración mínima y sencilla

Supongamos que tenemos una aplicación de línea de comandos cuyo trabajo es detener, iniciar o reiniciar algunos servicios. Esto podría organizarse con fines ilustrativos como un archivo app.py que es el script principal de la aplicación, con comandos individuales implementados en start.py, stop.py y restart.py. Supongamos además que queremos controlar la verbosidad de la aplicación a través de un argumento de línea de comandos, por defecto en logging.INFO. Aquí hay una forma en que se podría escribir app.py:

import argparse
import importlib
import logging
import os
import sys

def main(args=None):
    scriptname = os.path.basename(__file__)
    parser = argparse.ArgumentParser(scriptname)
    levels = ('DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL')
    parser.add_argument('--log-level', default='INFO', choices=levels)
    subparsers = parser.add_subparsers(dest='command',
                                       help='Available commands:')
    start_cmd = subparsers.add_parser('start', help='Start a service')
    start_cmd.add_argument('name', metavar='NAME',
                           help='Name of service to start')
    stop_cmd = subparsers.add_parser('stop',
                                     help='Stop one or more services')
    stop_cmd.add_argument('names', metavar='NAME', nargs='+',
                          help='Name of service to stop')
    restart_cmd = subparsers.add_parser('restart',
                                        help='Restart one or more services')
    restart_cmd.add_argument('names', metavar='NAME', nargs='+',
                             help='Name of service to restart')
    options = parser.parse_args()
    # the code to dispatch commands could all be in this file. For the purposes
    # of illustration only, we implement each command in a separate module.
    try:
        mod = importlib.import_module(options.command)
        cmd = getattr(mod, 'command')
    except (ImportError, AttributeError):
        print('Unable to find the code for command \'%s\'' % options.command)
        return 1
    # Could get fancy here and load configuration from file or dictionary
    logging.basicConfig(level=options.log_level,
                        format='%(levelname)s %(name)s %(message)s')
    cmd(options)

if __name__ == '__main__':
    sys.exit(main())

Y los comandos start, stop y reiniciar se pueden implementar en módulos separados, como para iniciar:

# start.py
import logging

logger = logging.getLogger(__name__)

def command(options):
    logger.debug('About to start %s', options.name)
    # actually do the command processing here ...
    logger.info('Started the \'%s\' service.', options.name)

y así para detener:

# stop.py
import logging

logger = logging.getLogger(__name__)

def command(options):
    n = len(options.names)
    if n == 1:
        plural = ''
        services = '\'%s\'' % options.names[0]
    else:
        plural = 's'
        services = ', '.join('\'%s\'' % name for name in options.names)
        i = services.rfind(', ')
        services = services[:i] + ' and ' + services[i + 2:]
    logger.debug('About to stop %s', services)
    # actually do the command processing here ...
    logger.info('Stopped the %s service%s.', services, plural)

y de manera similar para reiniciar:

# restart.py
import logging

logger = logging.getLogger(__name__)

def command(options):
    n = len(options.names)
    if n == 1:
        plural = ''
        services = '\'%s\'' % options.names[0]
    else:
        plural = 's'
        services = ', '.join('\'%s\'' % name for name in options.names)
        i = services.rfind(', ')
        services = services[:i] + ' and ' + services[i + 2:]
    logger.debug('About to restart %s', services)
    # actually do the command processing here ...
    logger.info('Restarted the %s service%s.', services, plural)

Si ejecutamos esta aplicación con el nivel de log predeterminado, obtenemos un resultado como este:

$ python app.py start foo
INFO start Started the 'foo' service.

$ python app.py stop foo bar
INFO stop Stopped the 'foo' and 'bar' services.

$ python app.py restart foo bar baz
INFO restart Restarted the 'foo', 'bar' and 'baz' services.

La primera palabra es el nivel de logging y la segunda palabra es el nombre del módulo o paquete del lugar donde se registró el evento.

Si cambiamos el nivel de logging, podemos cambiar la información enviada al log. Por ejemplo, si queremos más información:

$ python app.py --log-level DEBUG start foo
DEBUG start About to start foo
INFO start Started the 'foo' service.

$ python app.py --log-level DEBUG stop foo bar
DEBUG stop About to stop 'foo' and 'bar'
INFO stop Stopped the 'foo' and 'bar' services.

$ python app.py --log-level DEBUG restart foo bar baz
DEBUG restart About to restart 'foo', 'bar' and 'baz'
INFO restart Restarted the 'foo', 'bar' and 'baz' services.

Y si queremos menos:

$ python app.py --log-level WARNING start foo
$ python app.py --log-level WARNING stop foo bar
$ python app.py --log-level WARNING restart foo bar baz

En este caso, los comandos no imprimen nada en la consola, ya que no registran nada en el nivel de WARNING o superior.

Una GUI de Qt para logging

Una pregunta que surge de vez en cuando es sobre cómo loggear en una aplicación GUI. El framework Qt es un framework popular multiplataforma con bindings de Python que usan PySide2 o librerías PyQt5.

El siguiente ejemplo muestra cómo iniciar sesión en una GUI de Qt. Esto introduce una clase simple QtHandler que toma un invocable, que debería ser un slot en el hilo principal que realiza actualizaciones de la GUI. También se crea un hilo de trabajo para mostrar cómo puede iniciar sesión en la GUI tanto desde la propia interfaz de usuario (a través de un botón para el logging manual) como desde un hilo de trabajo que trabaja en segundo plano (aquí, simplemente registrando mensajes en niveles aleatorios con aleatorio breves retrasos intermedios).

El hilo worker se implementa usando la clase QThread de Qt en lugar del módulo threading, ya que hay circunstancias en las que uno tiene que usar QThread, que ofrece una mejor integración con otros componentes Qt.

El código debería funcionar con versiones recientes de PySide2 o PyQt5. Debería poder adaptar el enfoque a versiones anteriores de Qt. Consulte los comentarios en el fragmento de código para obtener información más detallada.

import datetime
import logging
import random
import sys
import time

# Deal with minor differences between PySide2 and PyQt5
try:
    from PySide2 import QtCore, QtGui, QtWidgets
    Signal = QtCore.Signal
    Slot = QtCore.Slot
except ImportError:
    from PyQt5 import QtCore, QtGui, QtWidgets
    Signal = QtCore.pyqtSignal
    Slot = QtCore.pyqtSlot


logger = logging.getLogger(__name__)


#
# Signals need to be contained in a QObject or subclass in order to be correctly
# initialized.
#
class Signaller(QtCore.QObject):
    signal = Signal(str, logging.LogRecord)

#
# Output to a Qt GUI is only supposed to happen on the main thread. So, this
# handler is designed to take a slot function which is set up to run in the main
# thread. In this example, the function takes a string argument which is a
# formatted log message, and the log record which generated it. The formatted
# string is just a convenience - you could format a string for output any way
# you like in the slot function itself.
#
# You specify the slot function to do whatever GUI updates you want. The handler
# doesn't know or care about specific UI elements.
#
class QtHandler(logging.Handler):
    def __init__(self, slotfunc, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.signaller = Signaller()
        self.signaller.signal.connect(slotfunc)

    def emit(self, record):
        s = self.format(record)
        self.signaller.signal.emit(s, record)

#
# This example uses QThreads, which means that the threads at the Python level
# are named something like "Dummy-1". The function below gets the Qt name of the
# current thread.
#
def ctname():
    return QtCore.QThread.currentThread().objectName()


#
# Used to generate random levels for logging.
#
LEVELS = (logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR,
          logging.CRITICAL)

#
# This worker class represents work that is done in a thread separate to the
# main thread. The way the thread is kicked off to do work is via a button press
# that connects to a slot in the worker.
#
# Because the default threadName value in the LogRecord isn't much use, we add
# a qThreadName which contains the QThread name as computed above, and pass that
# value in an "extra" dictionary which is used to update the LogRecord with the
# QThread name.
#
# This example worker just outputs messages sequentially, interspersed with
# random delays of the order of a few seconds.
#
class Worker(QtCore.QObject):
    @Slot()
    def start(self):
        extra = {'qThreadName': ctname() }
        logger.debug('Started work', extra=extra)
        i = 1
        # Let the thread run until interrupted. This allows reasonably clean
        # thread termination.
        while not QtCore.QThread.currentThread().isInterruptionRequested():
            delay = 0.5 + random.random() * 2
            time.sleep(delay)
            level = random.choice(LEVELS)
            logger.log(level, 'Message after delay of %3.1f: %d', delay, i, extra=extra)
            i += 1

#
# Implement a simple UI for this cookbook example. This contains:
#
# * A read-only text edit window which holds formatted log messages
# * A button to start work and log stuff in a separate thread
# * A button to log something from the main thread
# * A button to clear the log window
#
class Window(QtWidgets.QWidget):

    COLORS = {
        logging.DEBUG: 'black',
        logging.INFO: 'blue',
        logging.WARNING: 'orange',
        logging.ERROR: 'red',
        logging.CRITICAL: 'purple',
    }

    def __init__(self, app):
        super().__init__()
        self.app = app
        self.textedit = te = QtWidgets.QPlainTextEdit(self)
        # Set whatever the default monospace font is for the platform
        f = QtGui.QFont('nosuchfont')
        f.setStyleHint(f.Monospace)
        te.setFont(f)
        te.setReadOnly(True)
        PB = QtWidgets.QPushButton
        self.work_button = PB('Start background work', self)
        self.log_button = PB('Log a message at a random level', self)
        self.clear_button = PB('Clear log window', self)
        self.handler = h = QtHandler(self.update_status)
        # Remember to use qThreadName rather than threadName in the format string.
        fs = '%(asctime)s %(qThreadName)-12s %(levelname)-8s %(message)s'
        formatter = logging.Formatter(fs)
        h.setFormatter(formatter)
        logger.addHandler(h)
        # Set up to terminate the QThread when we exit
        app.aboutToQuit.connect(self.force_quit)

        # Lay out all the widgets
        layout = QtWidgets.QVBoxLayout(self)
        layout.addWidget(te)
        layout.addWidget(self.work_button)
        layout.addWidget(self.log_button)
        layout.addWidget(self.clear_button)
        self.setFixedSize(900, 400)

        # Connect the non-worker slots and signals
        self.log_button.clicked.connect(self.manual_update)
        self.clear_button.clicked.connect(self.clear_display)

        # Start a new worker thread and connect the slots for the worker
        self.start_thread()
        self.work_button.clicked.connect(self.worker.start)
        # Once started, the button should be disabled
        self.work_button.clicked.connect(lambda : self.work_button.setEnabled(False))

    def start_thread(self):
        self.worker = Worker()
        self.worker_thread = QtCore.QThread()
        self.worker.setObjectName('Worker')
        self.worker_thread.setObjectName('WorkerThread')  # for qThreadName
        self.worker.moveToThread(self.worker_thread)
        # This will start an event loop in the worker thread
        self.worker_thread.start()

    def kill_thread(self):
        # Just tell the worker to stop, then tell it to quit and wait for that
        # to happen
        self.worker_thread.requestInterruption()
        if self.worker_thread.isRunning():
            self.worker_thread.quit()
            self.worker_thread.wait()
        else:
            print('worker has already exited.')

    def force_quit(self):
        # For use when the window is closed
        if self.worker_thread.isRunning():
            self.kill_thread()

    # The functions below update the UI and run in the main thread because
    # that's where the slots are set up

    @Slot(str, logging.LogRecord)
    def update_status(self, status, record):
        color = self.COLORS.get(record.levelno, 'black')
        s = '<pre><font color="%s">%s</font></pre>' % (color, status)
        self.textedit.appendHtml(s)

    @Slot()
    def manual_update(self):
        # This function uses the formatted message passed in, but also uses
        # information from the record to format the message in an appropriate
        # color according to its severity (level).
        level = random.choice(LEVELS)
        extra = {'qThreadName': ctname() }
        logger.log(level, 'Manually logged!', extra=extra)

    @Slot()
    def clear_display(self):
        self.textedit.clear()


def main():
    QtCore.QThread.currentThread().setObjectName('MainThread')
    logging.getLogger().setLevel(logging.DEBUG)
    app = QtWidgets.QApplication(sys.argv)
    example = Window(app)
    example.show()
    sys.exit(app.exec_())

if __name__=='__main__':
    main()

Logging en syslog con soporte RFC5424

Although RFC 5424 dates from 2009, most syslog servers are configured by default to use the older RFC 3164, which hails from 2001. When logging was added to Python in 2003, it supported the earlier (and only existing) protocol at the time. Since RFC5424 came out, as there has not been widespread deployment of it in syslog servers, the SysLogHandler functionality has not been updated.

El RFC 5424 contiene algunas características útiles como el soporte para datos estructurados, y si necesitas poder registrar en un servidor syslog con soporte para ello, puedes hacerlo con una subclase handler que se parezca a esto:

import datetime
import logging.handlers
import re
import socket
import time

class SysLogHandler5424(logging.handlers.SysLogHandler):

    tz_offset = re.compile(r'([+-]\d{2})(\d{2})$')
    escaped = re.compile(r'([\]"\\])')

    def __init__(self, *args, **kwargs):
        self.msgid = kwargs.pop('msgid', None)
        self.appname = kwargs.pop('appname', None)
        super().__init__(*args, **kwargs)

    def format(self, record):
        version = 1
        asctime = datetime.datetime.fromtimestamp(record.created).isoformat()
        m = self.tz_offset.match(time.strftime('%z'))
        has_offset = False
        if m and time.timezone:
            hrs, mins = m.groups()
            if int(hrs) or int(mins):
                has_offset = True
        if not has_offset:
            asctime += 'Z'
        else:
            asctime += f'{hrs}:{mins}'
        try:
            hostname = socket.gethostname()
        except Exception:
            hostname = '-'
        appname = self.appname or '-'
        procid = record.process
        msgid = '-'
        msg = super().format(record)
        sdata = '-'
        if hasattr(record, 'structured_data'):
            sd = record.structured_data
            # This should be a dict where the keys are SD-ID and the value is a
            # dict mapping PARAM-NAME to PARAM-VALUE (refer to the RFC for what these
            # mean)
            # There's no error checking here - it's purely for illustration, and you
            # can adapt this code for use in production environments
            parts = []

            def replacer(m):
                g = m.groups()
                return '\\' + g[0]

            for sdid, dv in sd.items():
                part = f'[{sdid}'
                for k, v in dv.items():
                    s = str(v)
                    s = self.escaped.sub(replacer, s)
                    part += f' {k}="{s}"'
                part += ']'
                parts.append(part)
            sdata = ''.join(parts)
        return f'{version} {asctime} {hostname} {appname} {procid} {msgid} {sdata} {msg}'

Tendrá que estar familiarizado con el RFC 5424 para entender completamente el código anterior, y puede ser que tenga necesidades ligeramente diferentes (por ejemplo, para la forma de pasar los datos estructurales al log). No obstante, lo anterior debería poder adaptarse a sus necesidades específicas. Con el gestor anterior, usted pasaría datos estructurados usando algo como esto:

sd = {
    'foo@12345': {'bar': 'baz', 'baz': 'bozz', 'fizz': r'buzz'},
    'foo@54321': {'rab': 'baz', 'zab': 'bozz', 'zzif': r'buzz'}
}
extra = {'structured_data': sd}
i = 1
logger.debug('Message %d', i, extra=extra)

Cómo tratar un logger como una salida stream

A veces, necesitas interactuar con una API de terceros que espera un objeto tipo archivo para escribir, pero quieres dirigir la salida de la API a un logger. Puedes hacer esto usando una clase que envuelva un logger con una API tipo archivo. Aquí hay un pequeño script que ilustra tal clase:

import logging

class LoggerWriter:
    def __init__(self, logger, level):
        self.logger = logger
        self.level = level

    def write(self, message):
        if message != '\n':  # avoid printing bare newlines, if you like
            self.logger.log(self.level, message)

    def flush(self):
        # doesn't actually do anything, but might be expected of a file-like
        # object - so optional depending on your situation
        pass

    def close(self):
        # doesn't actually do anything, but might be expected of a file-like
        # object - so optional depending on your situation. You might want
        # to set a flag so that later calls to write raise an exception
        pass

def main():
    logging.basicConfig(level=logging.DEBUG)
    logger = logging.getLogger('demo')
    info_fp = LoggerWriter(logger, logging.INFO)
    debug_fp = LoggerWriter(logger, logging.DEBUG)
    print('An INFO message', file=info_fp)
    print('A DEBUG message', file=debug_fp)

if __name__ == "__main__":
    main()

Cuando se ejecuta este script, se imprime

INFO:demo:An INFO message
DEBUG:demo:A DEBUG message

También puedes usar LoggerWriter para redirigir sys.stdout y sys.stderr haciendo algo así:

import sys

sys.stdout = LoggerWriter(logger, logging.INFO)
sys.stderr = LoggerWriter(logger, logging.WARNING)

Debería hacer esto después de configurar logging para sus necesidades. En el ejemplo anterior, la llamada basicConfig() hace esto (utilizando el valor de sys.stderr antes de que sea sobrescrito por una instancia de LoggerWriter). Entonces, obtendrías este tipo de resultado:

>>> print('Foo')
INFO:demo:Foo
>>> print('Bar', file=sys.stderr)
WARNING:demo:Bar
>>>

Por supuesto, los ejemplos anteriores muestran la salida según el formato utilizado por basicConfig(), pero puede utilizar un formateador diferente cuando configure logging.

Ten en cuenta que con el esquema anterior, estás un poco a merced del buffering y de la secuencia de llamadas de escritura que estás interceptando. Por ejemplo, con la definición de LoggerWriter anterior, si tienes el fragmento

sys.stderr = LoggerWriter(logger, logging.WARNING)
1 / 0

entonces la ejecución del script da como resultado

WARNING:demo:Traceback (most recent call last):

WARNING:demo:  File "/home/runner/cookbook-loggerwriter/test.py", line 53, in <module>

WARNING:demo:
WARNING:demo:main()
WARNING:demo:  File "/home/runner/cookbook-loggerwriter/test.py", line 49, in main

WARNING:demo:
WARNING:demo:1 / 0
WARNING:demo:ZeroDivisionError
WARNING:demo::
WARNING:demo:division by zero

As you can see, this output isn’t ideal. That’s because the underlying code which writes to sys.stderr makes multiple writes, each of which results in a separate logged line (for example, the last three lines above). To get around this problem, you need to buffer things and only output log lines when newlines are seen. Let’s use a slghtly better implementation of LoggerWriter:

class BufferingLoggerWriter(LoggerWriter):
    def __init__(self, logger, level):
        super().__init__(logger, level)
        self.buffer = ''

    def write(self, message):
        if '\n' not in message:
            self.buffer += message
        else:
            parts = message.split('\n')
            if self.buffer:
                s = self.buffer + parts.pop(0)
                self.logger.log(self.level, s)
            self.buffer = parts.pop()
            for part in parts:
                self.logger.log(self.level, part)

Esto sólo almacena cosas hasta que se ve una nueva línea, y luego registra las líneas completas. Con este enfoque, se obtiene una mejor salida:

WARNING:demo:Traceback (most recent call last):
WARNING:demo:  File "/home/runner/cookbook-loggerwriter/main.py", line 55, in <module>
WARNING:demo:    main()
WARNING:demo:  File "/home/runner/cookbook-loggerwriter/main.py", line 52, in main
WARNING:demo:    1/0
WARNING:demo:ZeroDivisionError: division by zero

Patrones para evitar

Aunque las secciones anteriores han descrito formas de hacer las cosas que podría necesitar hacer o con las que tratar, vale la pena mencionar algunos patrones de uso que son inútiles y que, por lo tanto, deben evitarse en la mayoría de los casos. Las siguientes secciones no están en ningún orden en particular.

Abrir el mismo archivo de registro varias veces

En Windows, por lo general, no podrá abrir el mismo archivo varias veces, ya que esto lanzará un error de «otro proceso está usando el archivo». Sin embargo, en las plataformas POSIX no obtendrá ningún error si abre el mismo archivo varias veces. Esto podría hacerse accidentalmente, por ejemplo:

  • Agregar un controlador de archivos más de una vez que hace referencia al mismo archivo (por ejemplo, mediante un error de copiar/pegar/olvidar-cambiar).

  • Abrir dos archivos que se ven diferentes, ya que tienen diferentes nombres, pero son iguales porque uno es un enlace simbólico al otro.

  • Bifurcar un proceso, después del cual tanto el padre como el hijo tienen una referencia al mismo archivo. Esto podría ser mediante el uso del módulo multiprocessing, por ejemplo.

Abrir un archivo varias veces puede parecer que funciona la mayor parte del tiempo, pero puede dar lugar a una serie de problemas en la práctica:

  • La salida del registro se puede distorsionar porque varios subprocesos o procesos intentan escribir en el mismo archivo. Aunque el registro se protege de el uso simultáneo de la misma instancia de controlador por varios subprocesos, no existe tal protección si dos subprocesos diferentes intentan escrituras simultáneas utilizando dos instancias de controlador diferentes que apunten al mismo archivo.

  • Un intento de eliminar un archivo (por ejemplo, durante la rotación de archivos) falla silenciosamente, porque hay otra referencia que apunta a él. Esto puede generar confusión y una pérdida de tiempo de depuración: las entradas del registro terminan en lugares inesperados o se pierden por completo. O un archivo que debía ser movido permanece en su lugar, y crece en tamaño inesperadamente a pesar de que la rotación basada en el tamaño está supuestamente en su lugar.

Utilice las técnicas descritas en Logging a un sólo archivo desde múltiples procesos para evitar estos problemas.

Usar registradores como atributos en una clase o pasarlos como parámetros

Si bien puede haber casos inusuales en los que deba hacer esto, en general no tiene sentido porque los registradores son singletons. El código siempre puede acceder a una instancia de registrador dada por su nombre usando logging.getLogger(name), por lo que pasar instancias y mantenerlas como atributos de instancia no tiene sentido. Tenga en cuenta que en otros lenguajes como Java y C#, los registradores suelen ser atributos de clase estáticos. Sin embargo, este patrón no tiene sentido en Python, donde el módulo (y no la clase) es la unidad de descomposición del software.

Adding handlers other than NullHandler to a logger in a library

La configuración del registro agregando controladores, formateadores y filtros es responsabilidad del desarrollador de la aplicación, no del desarrollador de la biblioteca. Si mantiene una biblioteca, asegúrese de no agregar controladores a ninguno de sus registradores que no sean una instancia NullHandler.

Crear muchos registradores (loggers)

Los registradores son singletons que nunca se liberan durante la ejecución de un script, por lo que la creación de muchos registradores consumirá memoria que luego no se puede liberar. En lugar de crear un registrador por ej. archivo procesado o conexión de red realizada, use los mecanismos existentes para pasar información contextual a sus registros y restringir los registradores creados a aquellos que describen áreas dentro de su aplicación (generalmente módulos, pero ocasionalmente un poco más detallado que eso).

Otros recursos

Ver también

Módulo logging

Referencia de API para el módulo logging.

Módulo logging.config

API de configuración para el módulo logging.

Módulo logging.handlers

Gestores útiles incluidos con el módulo logging.

Tutorial Básico

Tutorial Avanzado